ﻻ يوجد ملخص باللغة العربية
This paper introduces a novel method to diagnose the source-target attention in state-of-the-art end-to-end speech recognition models with joint connectionist temporal classification (CTC) and attention training. Our method is based on the fact that both, CTC and source-target attention, are acting on the same encoder representations. To understand the functionality of the attention, CTC is applied to compute the token posteriors given the attention outputs. We found that the source-target attention heads are able to predict several tokens ahead of the current one. Inspired by the observation, a new regularization method is proposed which leverages CTC to make source-target attention more focused on the frames corresponding to the output token being predicted by the decoder. Experiments reveal stable improvements up to 7% and 13% relatively with the proposed regularization on TED-LIUM 2 and LibriSpeech.
End-to-end approaches for automatic speech recognition (ASR) benefit from directly modeling the probability of the word sequence given the input audio stream in a single neural network. However, compared to conventional ASR systems, these models typi
We present an end-to-end speech recognition model that learns interaction between two speakers based on the turn-changing information. Unlike conventional speech recognition models, our model exploits two speakers history of conversational-context in
The dominant neural machine translation models are based on the encoder-decoder structure, and many of them rely on an unconstrained receptive field over source and target sequences. In this paper we study a new architecture that breaks with both con
In this paper we investigate speech denoising as a defense against adversarial attacks on automatic speech recognition (ASR) systems. Adversarial attacks attempt to force misclassification by adding small perturbations to the original speech signal.
Non-autoregressive (NAR) modeling has gained more and more attention in speech processing. With recent state-of-the-art attention-based automatic speech recognition (ASR) structure, NAR can realize promising real-time factor (RTF) improvement with on