ﻻ يوجد ملخص باللغة العربية
In this paper, we give the definability of bilinear singular and fractional integral operators on Morrey-Banach space, as well as their commutators and we prove the boundedness of such operators on Morrey-Banach spaces. Moreover, the necessary condition for BMO via the bounedness of bilinear commutators on Morrey-Banach space is also given. As a application of our main results, we get the necessary conditions for BMO via the bounedness of bilinear integral operators on weighted Morrey space and Morrey space with variable exponents. Finally, we obtain the boundedness of bilinear C-Z operator on Morrey space with variable exponents.
In this paper, two related types of dualities are investigated. The first is the duality between left-invertible operators and the second is the duality between Banach spaces of vector-valued analytic functions. We will examine a pair ($mathcal{B},Ps
In this note, we study the boundedness of integral operators $I_{g}$ and $T_{g}$ on analytic Morrey spaces. Furthermore, the norm and essential norm of those operators are given.
With a view towards Riemannian or sub-Riemannian manifolds, RCD metric spaces and specially fractals, this paper makes a step further in the development of a theory of heat semigroup based $(1,p)$ Sobolev spaces in the general framework of Dirichlet
We characterize strong continuity of general operator semigroups on some Lebesgue spaces. In particular, a characterization of strong continuity of weighted composition semigroups on classical Hardy spaces and weighted Bergman spaces with regular wei
We present some properties of orthogonality and relate them with support disjoint and norm inequalities in p Schatten ideals. In addition, we investigate the problem of characterization of norm parallelism for bounded linear operators. We consider th