ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison by Conversion: Reverse-Engineering UCCA from Syntax and Lexical Semantics

103   0   0.0 ( 0 )
 نشر من قبل Daniel Hershcovich
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Building robust natural language understanding systems will require a clear characterization of whether and how various linguistic meaning representations complement each other. To perform a systematic comparative analysis, we evaluate the mapping between meaning representations from different frameworks using two complementary methods: (i) a rule-based converter, and (ii) a supervised delexicalized parser that parses to one framework using only information from the other as features. We apply these methods to convert the STREUSLE corpus (with syntactic and lexical semantic annotations) to UCCA (a graph-structured full-sentence meaning representation). Both methods yield surprisingly accurate target representations, close to fully supervised UCCA parser quality---indicating that UCCA annotations are partially redundant with STREUSLE annotations. Despite this substantial convergence between frameworks, we find several important areas of divergence.



قيم البحث

اقرأ أيضاً

142 - Yile Wang , Leyang Cui , Yue Zhang 2019
Contextualized embeddings such as BERT can serve as strong input representations to NLP tasks, outperforming their static embeddings counterparts such as skip-gram, CBOW and GloVe. However, such embeddings are dynamic, calculated according to a sente nce-level context, which limits their use in lexical semantics tasks. We address this issue by making use of dynamic embeddings as word representations in training static embeddings, thereby leveraging their strong representation power for disambiguating context information. Results show that this method leads to improvements over traditional static embeddings on a range of lexical semantics tasks, obtaining the best reported results on seven datasets.
Lexical semantics theories differ in advocating that the meaning of words is represented as an inference graph, a feature mapping or a vector space, thus raising the question: is it the case that one of these approaches is superior to the others in r epresenting lexical semantics appropriately? Or in its non antagonistic counterpart: could there be a unified account of lexical semantics where these approaches seamlessly emerge as (partial) renderings of (different) aspects of a core semantic knowledge base? In this paper, we contribute to these research questions with a number of experiments that systematically probe different lexical semantics theories for their levels of cognitive plausibility and of technological usefulness. The empirical findings obtained from these experiments advance our insight on lexical semantics as the feature-based approach emerges as superior to the other ones, and arguably also move us closer to finding answers to the research questions above.
We present an approach to combining distributional semantic representations induced from text corpora with manually constructed lexical-semantic networks. While both kinds of semantic resources are available with high lexical coverage, our aligned re source combines the domain specificity and availability of contextual information from distributional models with the conciseness and high quality of manually crafted lexical networks. We start with a distributional representation of induced senses of vocabulary terms, which are accompanied with rich context information given by related lexical items. We then automatically disambiguate such representations to obtain a full-fledged proto-conceptualization, i.e. a typed graph of induced word senses. In a final step, this proto-conceptualization is aligned to a lexical ontology, resulting in a hybrid aligned resource. Moreover, unmapped induced senses are associated with a semantic type in order to connect them to the core resource. Manual evaluations against ground-truth judgments for different stages of our method as well as an extrinsic evaluation on a knowledge-based Word Sense Disambiguation benchmark all indicate the high quality of the new hybrid resource. Additionally, we show the benefits of enriching top-down lexical knowledge resources with bottom-up distributional information from text for addressing high-end knowledge acquisition tasks such as cleaning hypernym graphs and learning taxonomies from scratch.
In the last decade, substantial progress has been made towards standardizing the syntax of graph query languages, and towards understanding their semantics and complexity of evaluation. In this paper, we consider temporal property graphs (TPGs) and p ropose temporal regular path queries (TRPQ) that incorporate time into TPGs navigation. Starting with design principles, we propose a natural syntactic extension of the MATCH clause of popular graph query languages. We then formally present the semantics of TRPQs, and study the complexity of their evaluation. We show that TRPQs can be evaluated in polynomial time if TPGs are time-stamped with time points. We also identify fragments of the TRPQ language that admit efficient evaluation over a more succinct interval-annotated representation. Our work on the syntax, and the positive complexity results, pave the way to implementations of TRPQs that are both usable and practical.
Inspired by humans remarkable ability to master arithmetic and generalize to unseen problems, we present a new dataset, HINT, to study machines capability of learning generalizable concepts at three different levels: perception, syntax, and semantics . In particular, concepts in HINT, including both digits and operators, are required to learn in a weakly-supervised fashion: Only the final results of handwriting expressions are provided as supervision. Learning agents need to reckon how concepts are perceived from raw signals such as images (i.e., perception), how multiple concepts are structurally combined to form a valid expression (i.e., syntax), and how concepts are realized to afford various reasoning tasks (i.e., semantics). With a focus on systematic generalization, we carefully design a five-fold test set to evaluate both the interpolation and the extrapolation of learned concepts. To tackle this challenging problem, we propose a neural-symbolic system by integrating neural networks with grammar parsing and program synthesis, learned by a novel deduction--abduction strategy. In experiments, the proposed neural-symbolic system demonstrates strong generalization capability and significantly outperforms end-to-end neural methods like RNN and Transformer. The results also indicate the significance of recursive priors for extrapolation on syntax and semantics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا