This paper shows the equivalence class definition of graphons hinders a direct development of dynamics on the graphon space, and hence proposes a state-driven approach to obtain dynamic graphons. The state-driven dynamic graphon model constructs a time-index sequence of the permutation-invariant probability measures on the universal graph space by assigning i.i.d. state random processes to $mathbbm{N}$ and edge random variables to each of the unordered integer pairs. The model is justified from three perspectives: graph limit definition preservation, genericity, and analysis availability. It preserves the graph limit definition of graphon by applying a bijection between the permutation-invariant probability measures on the universal graph space and the graphon space to obtain the dynamic graphon, where the existence of the bijection is proved. Also, a generalized version of the model is proved to cover the graphon space by an application of the celebrated Aldous-Hoover representation, where generalization is achieved by adding randomness to the edge-generating functions. Finally, analysis of the behavior of the dynamic graphon is shown to be available by making assumptions on the state random processes and the edge random variables.