ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Biconnectivity Restoration in Multi-Robot Systems for Robust Communication Maintenance

51   0   0.0 ( 0 )
 نشر من قبل Md Ishat-E-Rabban
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Maintaining a robust communication network plays an important role in the success of a multi-robot team jointly performing an optimization task. A key characteristic of a robust multi-robot system is the ability to repair the communication topology itself in the case of robot failure. In this paper, we focus on the Fast Biconnectivity Restoration (FBR) problem, which aims to repair a connected network to make it biconnected as fast as possible, where a biconnected network is a communication topology that cannot be disconnected by removing one node. We develop a Quadratically Constrained Program (QCP) formulation of the FBR problem, which provides a way to optimally solve the problem. We also propose an approximation algorithm for the FBR problem based on graph theory. By conducting empirical studies, we demonstrate that our proposed approximation algorithm performs close to the optimal while significantly outperforming the existing solutions.



قيم البحث

اقرأ أيضاً

This paper presents Kimera-Multi, the first multi-robot system that (i) is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures resulting from perceptual aliasing, (ii) is fully distributed and only relies on local (peer-to-peer) communication to achieve distributed localization and mapping, and (iii) builds a globally consistent metric-semantic 3D mesh model of the environment in real-time, where faces of the mesh are annotated with semantic labels. Kimera-Multi is implemented by a team of robots equipped with visual-inertial sensors. Each robot builds a local trajectory estimate and a local mesh using Kimera. When communication is available, robots initiate a distributed place recognition and robust pose graph optimization protocol based on a novel distributed graduated non-convexity algorithm. The proposed protocol allows the robots to improve their local trajectory estimates by leveraging inter-robot loop closures while being robust to outliers. Finally, each robot uses its improved trajectory estimate to correct the local mesh using mesh deformation techniques. We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots. Both real and simulated experiments involve long trajectories (e.g., up to 800 meters per robot). The experiments show that Kimera-Multi (i) outperforms the state of the art in terms of robustness and accuracy, (ii) achieves estimation errors comparable to a centralized SLAM system while being fully distributed, (iii) is parsimonious in terms of communication bandwidth, (iv) produces accurate metric-semantic 3D meshes, and (v) is modular and can be also used for standard 3D reconstruction (i.e., without semantic labels) or for trajectory estimation (i.e., without reconstructing a 3D mesh).
Submodular maximization has been widely used in many multi-robot task planning problems including information gathering, exploration, and target tracking. However, the interplay between submodular maximization and communication is rarely explored in the multi-robot setting. In many cases, maximizing the submodular objective may drive the robots in a way so as to disconnect the communication network. Driven by such observations, in this paper, we consider the problem of maximizing submodular function with connectivity constraints. Specifically, we propose a problem called Communication-aware Submodular Maximization (CSM), in which communication maintenance and submodular maximization are jointly considered in the decision-making process. One heuristic algorithm that consists of two stages, i.e. textit{topology generation} and textit{deviation minimization} is proposed. We validate the formulation and algorithm through numerical simulation. We find that our algorithm on average suffers only slightly performance decrease compared to the pure greedy strategy.
In this paper, we consider the dynamic multi-robot distribution problem where a heterogeneous group of networked robots is tasked to spread out and simultaneously move towards multiple moving task areas while maintaining connectivity. The heterogenei ty of the system is characterized by various categories of units and each robot carries different numbers of units per category representing heterogeneous capabilities. Every task area with different importance demands a total number of units contributed by all of the robots within its area. Moreover, we assume the importance and the total number of units requested from each task area is initially unknown. The robots need first to explore, i.e., reach those areas, and then be allocated to the tasks so to fulfill the requirements. The multi-robot distribution problem is formulated as designing controllers to distribute the robots that maximize the overall task fulfillment while minimizing the traveling costs in presence of connectivity constraints. We propose a novel connectivity-aware multi-robot redistribution approach that accounts for dynamic task allocation and connectivity maintenance for a heterogeneous robot team. Such an approach could generate sub-optimal robot controllers so that the amount of total unfulfilled requirements of the tasks weighted by their importance is minimized and robots stay connected at all times. Simulation and numerical results are provided to demonstrate the effectiveness of the proposed approaches.
This paper investigates the online motion coordination problem for a group of mobile robots moving in a shared workspace, each of which is assigned a linear temporal logic specification. Based on the realistic assumptions that each robot is subject t o both state and input constraints and can have only local view and local information, a fully distributed multi-robot motion coordination strategy is proposed. For each robot, the motion coordination strategy consists of three layers. An offline layer pre-computes the braking area for each region in the workspace, the controlled transition system, and a so-called potential function. An initialization layer outputs an initially safely satisfying trajectory. An online coordination layer resolves conflicts when one occurs. The online coordination layer is further decomposed into three steps. Firstly, a conflict detection algorithm is implemented, which detects conflicts with neighboring robots. Whenever conflicts are detected, a rule is designed to assign dynamically a planning order to each pair of neighboring robots. Finally, a sampling-based algorithm is designed to generate local collision-free trajectories for the robot which at the same time guarantees the feasibility of the specification. Safety is proven to be guaranteed for all robots at any time. The effectiveness and the computational tractability of the resulting solution is verified numerically by two case studies.
Distributed optimization consists of multiple computation nodes working together to minimize a common objective function through local computation iterations and network-constrained communication steps. In the context of robotics, distributed optimiz ation algorithms can enable multi-robot systems to accomplish tasks in the absence of centralized coordination. We present a general framework for applying distributed optimization as a module in a robotics pipeline. We survey several classes of distributed optimization algorithms and assess their practical suitability for multi-robot applications. We further compare the performance of different classes of algorithms in simulations for three prototypical multi-robot problem scenarios. The Consensus Alternating Direction Method of Multipliers (C-ADMM) emerges as a particularly attractive and versatile distributed optimization method for multi-robot systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا