ﻻ يوجد ملخص باللغة العربية
We demonstrate an ultrahigh-speed optical coherence tomography (OCT) based on a 100 MHz swept source (SS). An all polarization-maintaining figure-9 mode-locked fiber laser is used as the seed laser. After nonlinear spectral expansion in an Erbium-doped fiber amplifier, a flat top spectrum with respectively 1-dB and 10-dB bandwidths of 73.7 nm and 106 nm is obtained. The broadband femtosecond pulse is time stretched to a swept signal in a section of dispersion compensation fiber with a total dispersion of -84 ps/nm. With the swept source, the axial resolution of the SS-OCT is measured to be 21 um with a 6 dB sensitivity roll-off length of 3 mm. A tomographic image of an encoding disk and a hard disk jointly rotating at 17,000 rpm was acquired by using the SS-OCT with a high imaging quality.
In this paper, we present a novel concept for a multi-channel swept source optical coherence tomography (OCT) system based on photonic integrated circuits (PICs). At the core of this concept is a low-loss polarization dependent path routing approach
We report on an integrated photonic transmitter of up to 100 MHz repetition rate, which emits pulses centered at 850 nm with arbitrary amplitude and polarization. The source is suitable for free space quantum key distribution applications. The whole
Light detection and ranging (lidar) has long been used in various applications. Solid-state beam steering mechanisms are needed for robust lidar systems. Here we propose and demonstrate a lidar scheme called Swept Source Lidar that allows us to perfo
A high-speed 100 MHz strain monitor using a fiber Bragg grating, an optical filter, and a mode-locked optical fiber laser has been devised, which has a resolution of $Delta L/Lsim10^{-4}$. The strain monitor is sufficiently fast and robust for the ma
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), wh