ﻻ يوجد ملخص باللغة العربية
This paper aims to develop a Fault Tolerant Control (FTC) architecture, for the case of a damaged actuator for a multirotor UAV that can be applied across multirotor platforms based on their Attainable Virtual Control Set (AVCS). The research is aimed to study the AVCS and identify the parameters that limit the controllability of multirotor UAV post an actuator failure. Based on the study of controllability, the requirements for a FTC is laid out. The implemented control solution will be tested on a quadrotor, Intel Shooting Star UAV platform in indoor and outdoor flights using only the onboard sensors. The attitude control solution is implemented with reduced attitude control, and the control allocation is performed with pseudo-inverse based model inversion with sequential desaturation to ensure tilt priority. The model is identified with an offline Ordinary Least Squares routine and subsequently updated with the Recursive Least Squares method. An offline calibration routine is implemented to correct IMU offset distance from the centre of rotation to correct for accelerometer bias caused by the high-speed spin after failure in a quadrotor.
Humans race drones faster than algorithms, despite being limited to a fixed camera angle, body rate control, and response latencies in the order of hundreds of milliseconds. A better understanding of the ability of human pilots of selecting appropria
In quantum engineering, faults may occur in a quantum control system, which will cause the quantum control system unstable or deteriorate other relevant performance of the system. This note presents an estimator-based fault-tolerant control design ap
Robustness and reliability are two key requirements for developing practical quantum control systems. The purpose of this paper is to design a coherent feedback controller for a class of linear quantum systems suffering from Markovian jumping faults
We present a fault-tolerant semi-global control strategy for universal quantum computers. We show that N-dimensional array of qubits where only (N-1)-dimensional addressing resolution is available is compatible with fault-tolerant universal quantum c
In this paper, we present Neural-Swarm, a nonlinear decentralized stable controller for close-proximity flight of multirotor swarms. Close-proximity control is challenging due to the complex aerodynamic interaction effects between multirotors, such a