ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-term dynamics driven by resonant wave-particle interactions: from Hamiltonian resonance theory to phase space mapping

129   0   0.0 ( 0 )
 نشر من قبل Anton Artemyev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study we consider the Hamiltonian approach for the construction of a map for a system with nonlinear resonant interaction, including phase trapping and phase bunching effects. We derive basic equations for a single resonant trajectory analysis and then generalize them into the map in the energy/pitch-angle space. The main advances of this approach are the possibility to consider effects of many resonances and to simulate the evolution of the resonant particle ensemble on long time ranges. For illustrative purposes we consider the system with resonant relativistic electrons and field-aligned whistler-mode waves. The simulation results show that the electron phase space density within the resonant region is flattened with reduction of gradients. This evolution is much faster than the predictions of quasi-linear theory. We discuss further applications of the proposed approach and possible ways for its generalization.



قيم البحث

اقرأ أيضاً

Simultaneous observation of characteristic 3-dimensional (3D) signatures in the electron velocity distribution function (VDF) and intense quasi-monochromatic waves by the Magnetospheric Multiscale (MMS) spacecraft in the terrestrial magnetosheath are investigated. The intense wave packets are characterised and modeled analytically as quasi-parallel circularly-polarized whistler waves and applied to a test-particle simulation in view of gaining insight into the signature of the wave-particle resonances in velocity space. Both the Landau and the cyclotron resonances were evidenced in the test-particle simulations. The location and general shape of the test-particle signatures do account for the observations, but the finer details, such as the symmetry of the observed signatures are not matched, indicating either the limits of the test-particle approach, or a more fundamental physical mechanism not yet grasped. Finally, it is shown that the energisation of the electrons in this precise resonance case cannot be diagnosed using the moments of the distribution function, as done with the classical ${bf E}.{bf J}$ dissipation estimate.
Context. The first studies with Parker Solar Probe (PSP) data have made significant progress toward the understanding of the fundamental properties of ion cyclotron waves in the inner heliosphere. The survey mode particle measurements of PSP, however , did not make it possible to measure the coupling between electromagnetic fields and particles on the time scale of the wave periods. Aims. We present a novel approach to study wave-particle energy exchange with PSP. Methods. We use the Flux Angle operation mode of the Solar Probe Cup in conjunction with the electric field measurements and present a case study when the Flux Angle mode measured the direct interaction of the proton velocity distribution with an ion cyclotron wave. Results. Our results suggest that the energy transfer from fields to particles on the timescale of a cyclotron period is equal to approximately 3-6% of the electromagnetic energy flux. This rate is consistent with the hypothesis that the ion cyclotron wave was locally generated in the solar wind.
Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (fraction of a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed. {bf Key words:} the radiation belts, wave-particle interaction, plasma waves and instabilities
We analyze nonlinear aspects of the self-consistent wave-particle interaction using Hamiltonian dynamics in the single wave model, where the wave is modified due to the particle dynamics. This interaction plays an important role in the emergence of p lasma instabilities and turbulence. The simplest case, where one particle (N = 1) is coupled with one wave (M = 1), is completely integrable, and the nonlinear effects reduce to the wave potential pulsating while the particle either remains trapped or circulates forever. On increasing the number of particles (N = 2, M = 1), integrability is lost and chaos develops. Our analyses identify the two standard ways for chaos to appear and grow (the homoclinic tangle born from a separatrix, and the resonance overlap near an elliptic fixed point). Moreover, a strong form of chaos occurs when the energy is high enough for the wave amplitude to vanish occasionally.
A new diagnostic has been developed to investigate the wave-particle interaction in the phase-space in gyrokinetic particle-in-cell codes. Based on the projection of energy transfer terms onto the velocity space, the technique has been implemented an d tested in the global code ORB5 and it gives an opportunity to localise velocity domains of maximum wave-plasma energy exchange for separate species. Moreover, contribution of different species and resonances can be estimated as well, by integrating the energy transfer terms in corresponding velocity domains. This Mode-Plasma-Resonance (MPR) diagnostic has been applied to study the dynamics of the Energetic-particle-induced Geodesic Acoustic Modes (EGAMs) in an ASDEX Upgrade shot, by analysing the influence of different species on the mode time evolution. Since the equations on which the diagnostic is based, are valid in both linear and nonlinear cases, this approach can be applied to study nonlinear plasma effects. As a possible future application, the technique can be used, for instance, to investigate the nonlinear EGAM frequency chirping, or the plasma heating due to the damping of the EGAMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا