ﻻ يوجد ملخص باللغة العربية
We evaluate the uncertainties due to nuclear effects in global fits of proton parton distribution functions (PDFs) that utilise deep-inelastic scattering and Drell-Yan data on deuterium targets. To do this we use an iterative procedure to determine proton and deuteron PDFs simultaneously, each including the uncertainties in the other. We apply this procedure to determine the nuclear uncertainties in the SLAC, BCDMS, NMC and DYE866/NuSea fixed target deuteron data included in the NNPDF3.1 global fit. We show that the effect of the nuclear uncertainty on the proton PDFs is small, and that the increase in overall uncertainties is insignificant once we correct for nuclear effects.
As data become more precise, estimating theoretical uncertainties in global PDF determinations is likely to become increasingly necessary to obtain correspondingly precise PDFs. Here we present a next generation of global proton PDFs (NNPDF4.0) that
We compute the nuclear corrections to the proton-deuteron Drell-Yan cross section for inclusive dilepton production, which, when combined with the proton-proton cross section, is used to determine the flavor asymmetry in the proton sea, dbar - ubar.
Up to now, all charge radius measurements of the proton and deuteron assumed uniform spheroidal charge distribution. We investigate the nuclear deformation effects on these charge radius measurements by assuming a uniform prolate charge distribution
We present NNFF1.0, a new determination of the fragmentation functions (FFs) of charged pions, charged kaons, and protons/antiprotons from an analysis of single-inclusive hadron production data in electron-positron annihilation. This determination, p
We show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large $p_3 sim 3$ GeV momenta to get reasona