ﻻ يوجد ملخص باللغة العربية
Multimode cavity quantum electrodynamics ---where a two-level system interacts simultaneously with many cavity modes---provides a versatile framework for quantum information processing and quantum optics. Due to the combination of long coherence times and large interaction strengths, one of the leading experimental platforms for cavity QED involves coupling a superconducting circuit to a 3D microwave cavity. In this work, we realize a 3D multimode circuit QED system with single photon lifetimes of $2$ ms and cooperativities of $0.5-1.5times10^9$ across 9 modes of a novel seamless cavity. We demonstrate a variety of protocols for universal single-mode quantum control applicable across all cavity modes, using only a single drive line. We achieve this by developing a straightforward flute method for creating monolithic superconducting microwave cavities that reduces loss while simultaneously allowing control of the mode spectrum and mode-qubit interaction. We highlight the flexibility and ease of implementation of this technique by using it to fabricate a variety of 3D cavity geometries, providing a template for engineering multimode quantum systems with exceptionally low dissipation. This work is an important step towards realizing hardware efficient random access quantum memories and processors, and for exploring quantum many-body physics with photons.
By driving a dispersively coupled qubit-resonator system, we realize an impedance-matched $Lambda$ system that has two identical radiative decay rates from the top level and interacts with a semi-infinite waveguide. It has been predicted that a photo
We study a circuit QED setup where multiple superconducting qubits are ultrastrongly coupled to a single radio-frequency resonator. In this extreme parameter regime of cavity QED the dynamics of the electromagnetic mode is very slow compared to all o
We present an experimentally feasible scheme to implement holonomic quantum computation in the ultrastrong-coupling regime of light-matter interaction. The large anharmonicity and the Z2 symmetry of the quantum Rabi model allow us to build an effecti
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded SQUID. The anharmonic spectrum of the qubit-resonator sy
We introduce a new multimode cavity QED architecture for superconducting circuits which can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediate