ﻻ يوجد ملخص باللغة العربية
Gaussian Process (GPs) models are a rich distribution over functions with inductive biases controlled by a kernel function. Learning occurs through the optimisation of kernel hyperparameters using the marginal likelihood as the objective. This classical approach known as Type-II maximum likelihood (ML-II) yields point estimates of the hyperparameters, and continues to be the default method for training GPs. However, this approach risks underestimating predictive uncertainty and is prone to overfitting especially when there are many hyperparameters. Furthermore, gradient based optimisation makes ML-II point estimates highly susceptible to the presence of local minima. This work presents an alternative learning procedure where the hyperparameters of the kernel function are marginalised using Nested Sampling (NS), a technique that is well suited to sample from complex, multi-modal distributions. We focus on regression tasks with the spectral mixture (SM) class of kernels and find that a principled approach to quantifying model uncertainty leads to substantial gains in predictive performance across a range of synthetic and benchmark data sets. In this context, nested sampling is also found to offer a speed advantage over Hamiltonian Monte Carlo (HMC), widely considered to be the gold-standard in MCMC based inference.
The data association problem is concerned with separating data coming from different generating processes, for example when data come from different data sources, contain significant noise, or exhibit multimodality. We present a fully Bayesian approa
Gaussian process models are flexible, Bayesian non-parametric approaches to regression. Properties of multivariate Gaussians mean that they can be combined linearly in the manner of additive models and via a link function (like in generalized linear
We present a practical way of introducing convolutional structure into Gaussian processes, making them more suited to high-dimensional inputs like images. The main contribution of our work is the construction of an inter-domain inducing point approxi
A major challenge for machine learning is increasing the availability of data while respecting the privacy of individuals. Here we combine the provable privacy guarantees of the differential privacy framework with the flexibility of Gaussian processe
We introduce a framework for Continual Learning (CL) based on Bayesian inference over the function space rather than the parameters of a deep neural network. This method, referred to as functional regularisation for Continual Learning, avoids forgett