The Geometric Dynamical Northcott Property For Regular Polynomial Automorphisms of the Affine Plane


الملخص بالإنكليزية

We establish the finiteness of periodic points, that we called Geometric Dynamical Northcott Property, for regular polynomials automorphisms of the affine plane over a function field $mathbf{K}$ of characteristic zero, improving results of Ingram. For that, we show that when $mathbf{K}$ is the field of rational functions of a smooth complex projective curve, the canonical height of a subvariety is the mass of an appropriate bifurcation current and that a marked point is stable if and only if its canonical height is zero. We then establish the Geometric Dynamical Northcott Property using a similarity argument.

تحميل البحث