ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissipation engineered directional filter for quantum ratchets

71   0   0.0 ( 0 )
 نشر من قبل Zlata Fedorova
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate transport rectification in a hermitian Hamiltonian quantum ratchet by a dissipative, dynamic impurity. While the bulk of the ratchet supports transport in both directions, the properly designed loss function of the local impurity acts as a direction-dependent filter for the moving states. We analyse this scheme theoretically by making use of Floquet-S-Matrix theory. In addition, we provide the direct experimental observation of one-way transmittance in periodically modulated plasmonic waveguide arrays containing a local impurity with engineered losses.



قيم البحث

اقرأ أيضاً

68 - J. Peguiron , M. Grifoni 2004
A duality relation between the long-time dynamics of a quantum Brownian particle in a tilted ratchet potential and a driven dissipative tight-binding model is reported. It relates a situation of weak dissipation in one model to strong dissipation in the other one, and vice versa. We apply this duality relation to investigate transport and rectification in ratchet potentials: From the linear mobility we infer ground-state delocalization for weak dissipation. We report reversals induced by adiabatic driving and temperature in the ratchet current and its dependence on the potential shape.
We investigate directed motion in non-adiabatically rocked ratchet systems sustaining few bands below the barrier. Upon restricting the dynamics to the lowest M bands, the total system-plus-bath Hamiltonian is mapped onto a discrete tight-binding mod el containing all the information both on the intra- and inter-well tunneling motion. A closed form for the current in the incoherent tunneling regime is obtained. In effective single-band ratchets, no current rectification occurs. We apply our theory to describe rectification effects in vortex quantum ratchets devices. Current reversals upon variation of the ac-field amplitude or frequency are predicted.
Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a p olarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of binding electrons with energy up to several meV and the localization radius $ >$ 100AA.
111 - S. Denisov , S. Kohler , 2009
We investigate the quantum ratchet effect under the influence of weak dissipation which we treat within a Floquet-Markov master equation approach. A ratchet current emerges when all relevant symmetries are violated. Using time-reversal symmetric driv ing we predict a purely dissipation-induced quantum ratchet current. This directed quantum transport results from bath-induced superpositions of non-transporting Floquet states.
Interferometry provides direct evidence for anyon statistics. In the fractional quantum Hall effect, interferometers are susceptible to dephasing by neutral modes. The latter support chargeless quasiparticles (neutralons) which propagate upstream alo ng the edge and obey fractional statistics. Here we show that on a suitably engineered bilayer fractional quantum Hall edge, which is an experimentally available platform, the neutral modes can be gapped while leaving the desired charge modes gapless. The gapping mechanism is akin to a four-particle pairing superconductivity. Our considered bilayer structure can be shaped as an anyonic interferometer. We also discuss experimental charge transport signatures of the neutral mode gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا