ترغب بنشر مسار تعليمي؟ اضغط هنا

Logic-guided Semantic Representation Learning for Zero-Shot Relation Classification

105   0   0.0 ( 0 )
 نشر من قبل Ningyu Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Relation classification aims to extract semantic relations between entity pairs from the sentences. However, most existing methods can only identify seen relation classes that occurred during training. To recognize unseen relations at test time, we explore the problem of zero-shot relation classification. Previous work regards the problem as reading comprehension or textual entailment, which have to rely on artificial descriptive information to improve the understandability of relation types. Thus, rich semantic knowledge of the relation labels is ignored. In this paper, we propose a novel logic-guided semantic representation learning model for zero-shot relation classification. Our approach builds connections between seen and unseen relations via implicit and explicit semantic representations with knowledge graph embeddings and logic rules. Extensive experimental results demonstrate that our method can generalize to unseen relation types and achieve promising improvements.



قيم البحث

اقرأ أيضاً

Zero-shot learning extends the conventional object classification to the unseen class recognition by introducing semantic representations of classes. Existing approaches predominantly focus on learning the proper mapping function for visual-semantic embedding, while neglecting the effect of learning discriminative visual features. In this paper, we study the significance of the discriminative region localization. We propose a semantic-guided multi-attention localization model, which automatically discovers the most discriminative parts of objects for zero-shot learning without any human annotations. Our model jointly learns cooperative global and local features from the whole object as well as the detected parts to categorize objects based on semantic descriptions. Moreover, with the joint supervision of embedding softmax loss and class-center triplet loss, the model is encouraged to learn features with high inter-class dispersion and intra-class compactness. Through comprehensive experiments on three widely used zero-shot learning benchmarks, we show the efficacy of the multi-attention localization and our proposed approach improves the state-of-the-art results by a considerable margin.
Insufficient or even unavailable training data of emerging classes is a big challenge of many classification tasks, including text classification. Recognising text documents of classes that have never been seen in the learning stage, so-called zero-s hot text classification, is therefore difficult and only limited previous works tackled this problem. In this paper, we propose a two-phase framework together with data augmentation and feature augmentation to solve this problem. Four kinds of semantic knowledge (word embeddings, class descriptions, class hierarchy, and a general knowledge graph) are incorporated into the proposed framework to deal with instances of unseen classes effectively. Experimental results show that each and the combination of the two phases achieve the best overall accuracy compared with baselines and recent approaches in classifying real-world texts under the zero-shot scenario.
87 - Zhong Ji , Xuejie Yu , Yunlong Yu 2019
Zero-Shot Classification (ZSC) equips the learned model with the ability to recognize the visual instances from the novel classes via constructing the interactions between the visual and the semantic modalities. In contrast to the traditional image c lassification, ZSC is easily suffered from the class-imbalance issue since it is more concerned with the class-level knowledge transfer capability. In the real world, the class samples follow a long-tailed distribution, and the discriminative information in the sample-scarce seen classes is hard to be transferred to the related unseen classes in the traditional batch-based training manner, which degrades the overall generalization ability a lot. Towards alleviating the class imbalance issue in ZSC, we propose a sample-balanced training process to encourage all training classes to contribute equally to the learned model. Specifically, we randomly select the same number of images from each class across all training classes to form a training batch to ensure that the sample-scarce classes contribute equally as those classes with sufficient samples during each iteration. Considering that the instances from the same class differ in class representativeness, we further develop an efficient semantics-guided feature fusion model to obtain discriminative class visual prototype for the following visual-semantic interaction process via distributing different weights to the selected samples based on their class representativeness. Extensive experiments on three imbalanced ZSC benchmark datasets for both the Traditional ZSC (TZSC) and the Generalized ZSC (GZSC) tasks demonstrate our approach achieves promising results especially for the unseen categories those are closely related to the sample-scarce seen categories.
In the process of exploring the world, the curiosity constantly drives humans to cognize new things. Supposing you are a zoologist, for a presented animal image, you can recognize it immediately if you know its class. Otherwise, you would more likely attempt to cognize it by exploiting the side-information (e.g., semantic information, etc.) you have accumulated. Inspired by this, this paper decomposes the generalized zero-shot learning (G-ZSL) task into an open set recognition (OSR) task and a zero-shot learning (ZSL) task, where OSR recognizes seen classes (if we have seen (or known) them) and rejects unseen classes (if we have never seen (or known) them before), while ZSL identifies the unseen classes rejected by the former. Simultaneously, without violating OSRs assumptions (only known class knowledge is available in training), we also first attempt to explore a new generalized open set recognition (G-OSR) by introducing the accumulated side-information from known classes to OSR. For G-ZSL, such a decomposition effectively solves the class overfitting problem with easily misclassifying unseen classes as seen classes. The problem is ubiquitous in most existing G-ZSL methods. On the other hand, for G-OSR, introducing such semantic information of known classes not only improves the recognition performance but also endows OSR with the cognitive ability of unknown classes. Specifically, a visual and semantic prototypes-jointly guided convolutional neural network (VSG-CNN) is proposed to fulfill these two tasks (G-ZSL and G-OSR) in a unified end-to-end learning framework. Extensive experiments on benchmark datasets demonstrate the advantages of our learning framework.
This paper presents two ways of dealing with scarce data in semantic decoding using N-Best speech recognition hypotheses. First, we learn features by using a deep learning architecture in which the weights for the unknown and known categories are joi ntly optimised. Second, an unsupervised method is used for further tuning the weights. Sharing weights injects prior knowledge to unknown categories. The unsupervised tuning (i.e. the risk minimisation) improves the F-Measure when recognising nearly zero-shot data on the DSTC3 corpus. This unsupervised method can be applied subject to two assumptions: the rank of the class marginal is assumed to be known and the class-conditional scores of the classifier are assumed to follow a Gaussian distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا