ﻻ يوجد ملخص باللغة العربية
We study the spatial distributions of the spin and mass currents generated by a moving Gaussian magnetic obstacle in a symmetric, two-component Bose-Einstein condensate in two dimensions. We analytically describe the current distributions for a slow obstacle and show that the spin and the mass currents exhibit characteristic spatial structures resembling those of electromagnetic fields around dipole moments. When the obstacles velocity increases, we numerically observe that the flow pattern maintains its overall structure while the spin polarization induced by the obstacle is enhanced with an increased spin current. We investigate the critical velocity of the magnetic obstacle based on the local criterion of Landau energetic instability and find that it decreases almost linearly as the magnitude of the obstacles potential increases, which can be directly tested in current experiments.
We point out that the widely accepted condition g11g22<g122 for phase separation of a two-component Bose-Einstein condensate is insufficient if kinetic energy is taken into account, which competes against the intercomponent interaction and favors pha
A negative effective mass can be realized in quantum systems by engineering the dispersion relation. A powerful method is provided by spin-orbit coupling, which is currently at the center of intense research efforts. Here we measure an expanding spin
We study the dynamics of vortex dipoles in erbium ($^{168}$Er) and dysprosium ($^{164}$Dy) dipolar Bose-Einstein condensates (BECs) by applying an oscillating blue-detuned laser (Gaussian obstacle). For observing vortex dipoles, we solve a nonlocal G
We use collective oscillations of a two-component Bose-Einstein condensate (2CBEC) of Rb atoms prepared in the internal states $ket{1}equivket{F=1, m_F=-1}$ and $ket{2}equivket{F=2, m_F=1}$ for the precision measurement of the interspecies scattering
We classify the ground states and topological defects of a rotating two-component condensate when varying several parameters: the intracomponent coupling strengths, the intercomponent coupling strength and the particle numbers.No restriction is place