ﻻ يوجد ملخص باللغة العربية
Characterizing graphs by their spectra is an important topic in spectral graph theory, which has attracted a lot of attention of researchers in recent years. It is generally very hard and challenging to show a given graph to be determined by its spectrum. In Wang~[J. Combin. Theory, Ser. B, 122 (2017):438-451], the author gave a simple arithmetic condition for a family of graphs being determined by their generalized spectra. However, the method applies only to a family of the so called emph{controllable graphs}; it fails when the graphs are non-controllable. In this paper, we introduce a class of non-controllable graphs, called emph{almost controllable graphs}, and prove that, for any pair of almost controllable graphs $G$ and $H$ that are generalized cospectral, there exist exactly two rational orthogonal matrices $Q$ with constant row sums such that $Q^{rm T}A(G)Q=A(H)$, where $A(G)$ and $A(H)$ are the adjacency matrices of $G$ and $H$, respectively. The main ingredient of the proof is a use of the Binet-Cauchy formula. As an application, we obtain a simple criterion for an almost controllable graph $G$ to be determined by its generalized spectrum, which in some sense extends the corresponding result for controllable graphs.
It is not hard to find many complete bipartite graphs which are not determined by their spectra. We show that the graph obtained by deleting an edge from a complete bipartite graph is determined by its spectrum. We provide some graphs, each of which
In this paper we give two characterizations of the $p times q$-grid graphs as co-edge-regular graphs with four distinct eigenvalues.
An almost self-centered graph is a connected graph of order $n$ with exactly $n-2$ central vertices, and an almost peripheral graph is a connected graph of order $n$ with exactly $n-1$ peripheral vertices. We determine (1) the maximum girth of an alm
This paper disproves a conjecture of Wang, Wu, Yan and Xie, and answers in negative a question in Dvorak, Pekarek and Sereni. In return, we pose five open problems.
In this work we introduce the notion of almost-symmetry for generalized numerical semigroups. In addition to the main properties occurring in this new class, we present several characterizations for its elements. In particular we show that this class