ﻻ يوجد ملخص باللغة العربية
In this paper we consider the energy and momentum transport in (1+1)-dimension conformal field theories (CFTs) that are deformed by an irrelevant operator $Tbar{T}$, using the integrability based generalized hydrodynamics, and holography. The two complementary methods allow us to study the energy and momentum transport after the in-homogeneous quench, derive the exact non-equilibrium steady states (NESS) and calculate the Drude weights and the diffusion constants. Our analysis reveals that all of these quantities satisfy universal formulae regardless of the underlying CFT, thereby generalizing the universal formulae for these quantities in pure CFTs. As a sanity check, we also confirm that the exact momentum diffusion constant agrees with the conformal perturbation. These fundamental physical insights have important consequences for our understanding of the $Tbar{T}$-deformed CFTs. First of all, they provide the first check of the $Tbar{T}$-deformed $mathrm{AdS}_3$/$mathrm{CFT}_2$ correspondence from the dynamical standpoint. And secondly, we are able to identify a remarkable connection between the $Tbar{T}$-deformed CFTs and reversible cellular automata.
We consider the out-of-equilibrium transport in $Tbar{T}$-deformed (1+1)-dimension conformal field theories (CFTs). The theories admit two disparate approaches, integrability and holography, which we make full use of in order to compute the transport
Classification of the non-equilibrium quantum many-body dynamics is a challenging problem in condensed matter physics and statistical mechanics. In this work, we study the basic question that whether a (1+1) dimensional conformal field theory (CFT) i
In this work, we try to construct the Lax connections of $Tbar{T}$-deformed integrable field theories in two different ways. With reasonable assumptions, we make ansatz and find the Lax pairs in the $Tbar{T}$-deformed affine Toda theories and the pri
We study $Tbar T$ deformations of 2d CFTs with periodic boundary conditions. We relate these systems to string models on $mathbb{R}times {S}^1times{cal M}$, where $cal M$ is the target space of a 2d CFT. The string model in the light cone gauge is id
It is widely expected that at sufficiently high temperatures order is always lost, e.g. magnets loose their ferromagnetic properties. We pose the question of whether this is always the case in the context of quantum field theory in $d$ space dimensio