ﻻ يوجد ملخص باللغة العربية
Major solar eruptions occasionally direct interplanetary coronal mass ejections (ICMEs) to Earth and cause significant geomagnetic storms and low-latitude aurorae. While single extreme storms are of significant threats to the modern civilization, storms occasionally appear in sequence and, acting synergistically, cause perfect storms at Earth. The stormy interval in January 1938 was one of such cases. Here, we analyze the contemporary records to reveal its time series on their source active regions, solar eruptions, ICMEs, geomagnetic storms, low-latitude aurorae, and cosmic-ray (CR) variations. Geomagnetic records show that three storms occurred successively on 17/18 January (Dcx ~ -171 nT) on 21/22 January (Dcx ~ -328 nT) and on 25/26 January (Dcx ~ -336 nT). The amplitudes of the cosmic-ray variations and sudden storm commencements show the impact of the first ICME as the largest (~ 6% decrease in CR and 72 nT in SSC) and the ICME associated with the storms that followed as more moderate (~ 3% decrease in CR and 63 nT in SSC; ~ 2% decrease in CR and 63 nT in SSC). Interestingly, a significant solar proton event occurred on 16/17 January and the Cheltenham ionization chamber showed a possible ground level enhancement. During the first storm, aurorae were less visible at mid-latitudes, whereas during the second and third storms, the equatorward boundaries of the auroral oval were extended down to 40.3{deg} and 40.0{deg} in invariant latitude. This contrast shows that the initial ICME was probably faster, with a higher total magnitude but a smaller southward component.
So far most studies on the structure of coronal mass ejections (CMEs) are conducted through white-light coronagraphs, which demonstrate about one third of CMEs exhibit the typical three-part structure in the high corona (e.g., beyond 2 Rs), i.e., the
While the Sun is generally more eruptive during its maximum and declining phases, observational evidence shows certain cases of powerful solar eruptions during the quiet phase of the solar activity. Occurring in the weak Solar Cycle 14 just after its
We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 (PROBA2) spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since February 2010. With a f
Coronal Mass Ejections (CMEs) are large-scale eruptions from the Sun into interplanetary space. Despite being major space weather drivers, our knowledge of the CME properties in the inner heliosphere remains constrained by the scarcity of observation