ترغب بنشر مسار تعليمي؟ اضغط هنا

The intensity and evolution of the extreme storms in January 1938

331   0   0.0 ( 0 )
 نشر من قبل Hisashi Hayakawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Major solar eruptions occasionally direct interplanetary coronal mass ejections (ICMEs) to Earth and cause significant geomagnetic storms and low-latitude aurorae. While single extreme storms are of significant threats to the modern civilization, storms occasionally appear in sequence and, acting synergistically, cause perfect storms at Earth. The stormy interval in January 1938 was one of such cases. Here, we analyze the contemporary records to reveal its time series on their source active regions, solar eruptions, ICMEs, geomagnetic storms, low-latitude aurorae, and cosmic-ray (CR) variations. Geomagnetic records show that three storms occurred successively on 17/18 January (Dcx ~ -171 nT) on 21/22 January (Dcx ~ -328 nT) and on 25/26 January (Dcx ~ -336 nT). The amplitudes of the cosmic-ray variations and sudden storm commencements show the impact of the first ICME as the largest (~ 6% decrease in CR and 72 nT in SSC) and the ICME associated with the storms that followed as more moderate (~ 3% decrease in CR and 63 nT in SSC; ~ 2% decrease in CR and 63 nT in SSC). Interestingly, a significant solar proton event occurred on 16/17 January and the Cheltenham ionization chamber showed a possible ground level enhancement. During the first storm, aurorae were less visible at mid-latitudes, whereas during the second and third storms, the equatorward boundaries of the auroral oval were extended down to 40.3{deg} and 40.0{deg} in invariant latitude. This contrast shows that the initial ICME was probably faster, with a higher total magnitude but a smaller southward component.



قيم البحث

اقرأ أيضاً

107 - H. Q. Song , J. Zhang , L. P. Li 2019
So far most studies on the structure of coronal mass ejections (CMEs) are conducted through white-light coronagraphs, which demonstrate about one third of CMEs exhibit the typical three-part structure in the high corona (e.g., beyond 2 Rs), i.e., the bright front, the dark cavity and the bright core. In this paper, we address the CME structure in the low corona (e.g., below 1.3 Rs) through extreme-ultraviolet (EUV) passbands and find that the three-part CMEs in the white-light images can possess a similar three-part appearance in the EUV images, i.e., a leading edge, a low-density zone, and a filament or hot channel. The analyses identify that the leading edge and the filament or hot channel in the EUV passbands evolve into the front and the core later within several solar radii in the white-light passbands, respectively. Whats more, we find that the CMEs without obvious cavity in the white-light images can also exhibit the clear three-part appearance in the EUV images, which means that the low-density zone in the EUV images (observed as the cavity in white-light images) can be compressed and/or transformed gradually by the expansion of the bright core and/or the reconnection of magnetic field surrounding the core during the CME propagation outward. Our study suggests that more CMEs can possess the clear three-part structure in their early eruption stage. The nature of the low-density zone between the leading edge and the filament or hot channel is discussed.
While the Sun is generally more eruptive during its maximum and declining phases, observational evidence shows certain cases of powerful solar eruptions during the quiet phase of the solar activity. Occurring in the weak Solar Cycle 14 just after its minimum, the extreme space weather event in 1903 October -- November was one of these cases. Here, we reconstruct the time series of geomagnetic activity based on contemporary observational records. With the mid-latitude magnetograms, the 1903 magnetic storm is thought to be caused by a fast coronal mass ejection (~1500 km/s) and is regarded as an intense event with an estimated minimum Dst of ~-513 nT The reconstructed time series has been compared with the equatorward extension of auroral oval (~44.1{deg} in invariant latitude) and the time series of telegraphic disturbances. This case study shows that potential threats posed by extreme space weather events exist even during weak solar cycles or near their minima.
577 - T. Rollett , C. Moestl , M. Temmer 2014
We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CMEs propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ~2700 km/s at 15 R_sun to ~1500 km/s at 154 R_sun), the Earth-directed part showed an abrupt retardation below 35 R_sun (from ~1700 to ~900 km/s). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 (PROBA2) spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since February 2010. With a f ield-of-view of 54x54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAPs point spread function (PSF) from the observations. In this paper we use the resulting images to conduct the first ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three-year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic field that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.
Coronal Mass Ejections (CMEs) are large-scale eruptions from the Sun into interplanetary space. Despite being major space weather drivers, our knowledge of the CME properties in the inner heliosphere remains constrained by the scarcity of observation s at distances other than 1 au. Furthermore, most CMEs are observed in situ by single spacecraft, requiring numerical models to complement the sparse observations available. We aim to assess the ability of the linear force-free spheromak CME model in EUHFORIA to describe the radial evolution of interplanetary CMEs, yielding new context for observational studies. We model one well-studied CME, and investigate its radial evolution by placing virtual spacecraft along the Sun-Earth line in the simulation domain. To directly compare observational and modelling results, we characterise the interplanetary CME signatures between 0.2 and 1.9 au from modelled time series, exploiting techniques traditionally employed to analyse real in situ data. Results show that the modelled radial evolution of the mean solar wind and CME values is consistent with observational and theoretical expectations. The CME expands as a consequence of the decaying pressure in the surrounding wind: the expansion is rapid within 0.4 au, and moderate at larger distances. The early rapid expansion could not explain the overestimated CME radial size in our simulation, suggesting this is an intrinsic limitation of the spheromak geometry used. The magnetic field profile indicates a relaxation of the CME during propagation, while ageing is most probably not a substantial source of magnetic asymmetry beyond 0.4 au. We also report a CME wake that is significantly shorter than suggested by observations. Overall, EUHFORIA provides a consistent description of the radial evolution of solar wind and CMEs; nevertheless, improvements are required to better reproduce the CME radial extension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا