ﻻ يوجد ملخص باللغة العربية
The Hubble Space Telescope (HST) has been providing tremendous survey efficiency via its pure-parallel mode, by observing another field in parallel with the primary instrument in operation for the primary observation. In this study, we present a new archival project, SuperBoRG, which aims at compiling data taken in extragalactic parallel programs of HST with WFC3 in the past decade; including pure-parallel (BoRG, HIPPIES, and COS-GTO) and coordinated-parallel (CLASH and RELICS) programs. The total effective area reaches $sim0.41$deg$^2$ from 4.1Msec, or 47days, of observing time, which is the largest collection of optical-NIR imaging data of HST for extragalactic science. We reduce all data in a consistent manner with an updated version of our data reduction pipeline. When available, infrared imaging data from the Spitzer Space Telescope are included in photometric analyses. The dataset consists of 316 independent sightlines and is highly effective for identification of high-$z$ luminous sources ($M_mathrm{UV}<-21$mag) at $zsim7$ to $12$, helping to minimize the effects of cosmic variance. As a demonstration, we present three new $z>7$ source candidates, including one luminous galaxy candidate at $z_mathrm{phot}sim10.4$ with $M_mathrm{UV}sim-21.9$ mag; for this object the best-fit spectral energy distribution implies a large amount of stellar mass ($log M_*/M_odot sim 10$) and moderate dust attenuation ($A_V sim 1.4$mag), though the possibility of it being a low-$z$ interloper cannot completely be rejected ($sim23%$) with the current dataset. The dataset presented in this study is also suited for intermediate and low-$z$ science cases.
To extend the search for quasars in the epoch of reionization beyond the tip of the luminosity function, we explore point source candidates at redshift $zsim8$ in SuperBoRG, a compilation of $sim$0.4deg$^2$ archival medium-deep ($m_{rm F160W}sim 26.5
Until now, investigating the early stages of galaxy formation has been primarily the realm of theoretical modeling and computer simulations, which require many physical ingredients and are challenging to test observationally. However, the latest Hubb
The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) enabled the search for the first galaxies observed at z ~ 8 - 11 (500 - 700 Myr after the Big Bang). To continue quantifying the number density of the most luminous galaxies (M_AB ~ -
We present the first results on the search for very bright (M_AB -21) galaxies at redshift z~8 from the Brightest of Reionizing Galaxies (BoRG) survey. BoRG is a Hubble Space Telescope Wide Field Camera 3 pure-parallel survey that is obtaining images
We present new HST WFPC3 imaging of four gravitationally lensed quasars: MG 0414+0534; RXJ 0911+0551; B 1422+231; WFI J2026-4536. In three of these systems we detect wavelength-dependent microlensing, which we use to place constraints on the sizes an