ﻻ يوجد ملخص باللغة العربية
We consider a double Gaussian approximation to describe the wavefunction of twin photons (also called a biphoton) created in a nonlinear crystal via a type-I spontaneous parametric downconversion (SPDC) process. We find that the wavefunction develops a Gouy phase while it propagates, being dependent of the two-photon correlation through the Rayleigh length. We evaluate the covariance matrix and show that the logarithmic negativity, useful in quantifying entanglement in Gaussian states, although Rayleigh-dependent, does not depend on the propagation distance. In addition, we show that the two-photon entanglement can be connected to the biphoton Gouy phase as these quantities are Rayleigh-length-related. Then, we focus the double Gaussian biphoton wavefunction using a thin lens and calculate a Gouy phase that is in reasonable agreement with the experimental data of D. Kawase et al. published in Ref. [1].
We propose experimental measurements of the logarithmic negativity, which quantifies quantum correlations using Gouy phase measurements in an asymmetric double-slit interference experiment for twin photons. This is possible because both quantities ha
Recently there have been experimental results on Poisson spot matter wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical mod
Spectrally intrinsically uncorrelated biphoton states generated from nonlinear crystals are very important but rare resources for quantum photonics and quantum information applications. Previously, such biphoton states were generated from several kin
We report the experimental verification of nonclassical correlations for a four-wave-mixing process in an ensemble of cold two-level atoms, confirming theoretical predictions by Du et al. in 2007 for the violation of a Cauchy-Schwarz inequality in th
Quantum correlations encoded in photonic Laguerre-Gaussian modes were shown to be related to the Gouy phase shifts (D. Kawase et al., Phys. Rev. Lett. 101, 050501 (2008)) allowing for a non-destructive manipulation of photonic quantum states. In this