ﻻ يوجد ملخص باللغة العربية
In this note we study a natural measure on plane partitions giving rise to a certain discrete-time Muttalib-Borodin process (MBP): each time-slice is a discrete version of a Muttalib-Borodin ensemble (MBE). The process is determinantal with explicit time-dependent correlation kernel. Moreover, in the $q to 1$ limit, it converges to a continuous Jacobi-like MBP with Muttalib-Borodin marginals supported on the unit interval. This continuous process is also determinantal with explicit correlation kernel. We study its hard-edge scaling limit (around 0) to obtain a discrete-time-dependent generalization of the classical continuous Bessel kernel of random matrix theory (and, in fact, of the Meijer $G$-kernel as well). We lastly discuss two related applications: random sampling from such processes, and their interpretations as models of directed last passage percolation (LPP). In doing so, we introduce a corner growth model naturally associated to Jacobi processes, a version of which is the usual corner growth of Forrester-Rains in logarithmic coordinates. The aforementioned hard edge limits for our MBPs lead to interesting asymptotics for these LPP models. In particular, a special cases of our LPP asymptotics give rise (via the random matrix Bessel kernel and following Johanssons lead) to an extremal statistics distribution interpolating between the Tracy-Widom GUE and the Gumbel distributions.
We study probabilistic and combinatorial aspects of natural volume-and-trace weighted plane partitions and their continuous analogues. We prove asymptotic limit laws for the largest parts of these ensembles in terms of new and known hard- and soft-ed
We show that the symplectic and orthogonal character analogues of Okounkovs Schur measure (on integer partitions) are determinantal, with explicit correlation kernels. We apply this to prove certain Borodin-Okounkov-Gessel-type results concerning Toe
Consider the normalized adjacency matrices of random $d$-regular graphs on $N$ vertices with fixed degree $dgeq3$. We prove that, with probability $1-N^{-1+{varepsilon}}$ for any ${varepsilon} >0$, the following two properties hold as $N to infty$ pr
We consider Gibbs distributions on permutations of a locally finite infinite set $Xsubsetmathbb{R}$, where a permutation $sigma$ of $X$ is assigned (formal) energy $sum_{xin X}V(sigma(x)-x)$. This is motivated by Feynmans path representation of the q
We consider two-dimensional marked point processes which are Gibbsian with a two-body-potential U. U is supposed to have an internal continuous symmetry. We show that under suitable continuity conditions the considered processes are invariant under t