ترغب بنشر مسار تعليمي؟ اضغط هنا

Nature of native atomic defects in ZrTe$_5$ and their impact on the low-energy electronic structure

93   0   0.0 ( 0 )
 نشر من قبل Bj\\\"orn Salzmann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past decades, investigations of the anomalous low-energy electronic properties of ZrTe$_5$ have reached a wide array of conclusions. An open question is the growth methods impact on the stoichiometry of ZrTe$_5$ samples, especially given the very small density of states near its chemical potential. Here we report on high resolution scanning tunneling microscopy and spectroscopy measurements performed on samples grown via different methods. Using density functional theory calculations, we identify the most prevalent types of atomic defects on the surface of ZrTe$_5$, namely Te vacancies and intercalated Zr atoms. Finally, we precisely quantify their density and outline their role as ionized defects in the anomalous resistivity of this material.



قيم البحث

اقرأ أيضاً

The transition metal dichalcogenide 1T-TiSe2 is a quasi two-dimensional layered material with a charge density wave (CDW) transition temperature of TCDW 200 K. Self-doping effects for crystals grown at different temperatures introduce structural defe cts, modify the temperature dependent resistivity and strongly perturbate the CDW phase. Here we study the structural and doping nature of such native defects combining scanning tunneling microscopy/spectroscopy and ab initio calculations. The dominant native single atom dopants we identify in our single crystals are intercalated Ti atoms, Se vacancies and Se substitutions by residual iodine and oxygen.
We have performed a systematic high-momentum-resolution photoemission study on ZrTe$_5$ using $6$ eV photon energy. We have measured the band structure near the $Gamma$ point, and quantified the gap between the conduction and valence band as $18 leq Delta leq 29$ meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the 3D nature of the materials band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe$_5$ is not a 3D strong topological insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe$_5$ being a 3D weak topological insulator.
The millimeter sized monolayer and bilayer 2H-MoTe2 single crystal samples are prepared by a new mechanical exfoliation method. Based on such high-quality samples, we report the first direct electronic structure study on them, using standard high res olution angle-resolved photoemission spectroscopy (ARPES). A direct band gap of 0.924eV is found at K in the rubidium-doped monolayer MoTe2. Similar valence band alignment is also observed in bilayer MoTe2,supporting an assumption of a analogous direct gap semiconductor on it. Our measurements indicate a rather large band splitting of 212meV at the valence band maximum (VBM) in monolayer MoTe2, and the splitting is systematically enlarged with layer stacking, from monolayer to bilayer and to bulk. Meanwhile, our PBE band calculation on these materials show excellent agreement with ARPES results. Some fundamental electronic parameters are derived from the experimental and calculated electronic structures. Our findings lay a foundation for further application-related study on monolayer and bilayer MoTe2.
246 - J. M. Pruneda 2011
First-principles calculations of substitutional defects and vacancies are performed for zigzag-edged hybrid C/BN nanosheets and nanotubes which recently have been proposed to exhibit half-metallic properties. The formation energies show that defects form preferentially at the interfaces between graphene and BN domains rather than in the middle of these domains, and that substitutional defects dominate over vacancies. Chemical control can be used to favor localization of defects at C- B interfaces (nitrogen-rich environment) or C-N interfaces (nitrogen-poor environment). Although large defect concentrations have been considered here (106 cm-1), half-metallic properties can subsist when defects are localized at the C-B interface and for negatively charged defects localized at the C- N interface, hence the promising magnetic properties theoretically predicted for these zigzag-edged nanointerfaces might not be destroyed by point defects if these are conveniently engineered during synthesis.
Studying the atomic structure of intrinsic defects in two-dimensional transition metal dichalcogenides is difficult since they damage quickly under the intense electron irradiation in transmission electron microscopy (TEM). However, this can also lea d to insights into the creation of defects and their atom-scale dynamics. We first show that MoTe 2 monolayers without protection indeed quickly degrade during scanning TEM (STEM) imaging, and discuss the observed atomic-level dynamics, including a transformation from the 1H phase into 1T, three-fold rotationally symmetric defects, and the migration of line defects between two 1H grains with a 60{deg} misorientation. We then analyze the atomic structure of MoTe2 encapsulated between two graphene sheets to mitigate damage, finding the as-prepared material to contain an unexpectedly large concentration of defects. These include similar point defects (or quantum dots, QDs) as those created in the non-encapsulated material, and two different types of line defects (or quantum wires, QWs) that can be transformed from one to the other under electron irradiation. Our density functional theory simulations indicate that the QDs and QWs embedded in MoTe2 introduce new midgap states into the semiconducting material, and may thus be used to control its electronic and optical properties. Finally, the edge of the encapsulated material appears amorphous, possibly due to the pressure caused by the encapsulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا