ﻻ يوجد ملخص باللغة العربية
We present a detailed study of the magnetic and electronic properties of U$_2$Rh$_3$Si$_5$, a material that has been demonstrated to exhibit a first order antiferromagnetic phase transition. From a high magnetic field study, together with extensive experiments in moderate fields, we establish the magnetic phase diagrams for all crystallographic directions. The possibility of an electronic phase in a narrow interval above the Neel temperature as a precursor of a magnetic phase is discussed.
We report the temperature-dependent optical conductivity and ARPES studies of the iron-based superconductor (SC) Sr$_{0.67}$Na$_{0.33}$Fe$_2$As$_2$ in the high-temperature tetragonal paramagnetic phase; below the structural and magnetic transitions a
The detailed optical properties have been determined for the iron-based materials $A$Fe$_2$As$_2$, where $A=,$Ca, Sr, and Ba, for light polarized in the iron-arsenic ($a-b$) planes over a wide frequency range, above and below the magnetic and structu
Ni/Ga bilayers are a versatile playground for exploring the competition of the strongly antagonistic ferromagnetic and superconducting phases. Systematically characterizing this competitions impact on highly ballistic Al/Al$_2 $O$_3 $/Ni/Ga junctions
The optical properties of KFe$_2$As$_2$ have been measured for light polarized in the a-b planes over a wide temperature and frequency range. Below $T^astsimeq 155$ K, where this material undergoes an incoherent-coherent crossover, we observe a new c
We present a detailed appraisal of the optical and plasmonic properties of ordered alloys of the form Au$_{x}$Ag$_{y}$Cu$_{1-x-y}$, as predicted by means of first-principles many-body perturbation theory augmented by a semi-empirical Drude-Lorentz mo