Concatenated Codes for Recovery From Multiple Reads of DNA Sequences


الملخص بالإنكليزية

Decoding sequences that stem from multiple transmissions of a codeword over an insertion, deletion, and substitution channel is a critical component of efficient deoxyribonucleic acid (DNA) data storage systems. In this paper, we consider a concatenated coding scheme with an outer low-density parity-check code and either an inner convolutional code or a block code. We propose two new decoding algorithms for inference from multiple received sequences, both combining the inner code and channel to a joint hidden Markov model to infer symbolwise a posteriori probabilities (APPs). The first decoder computes the exact APPs by jointly decoding the received sequences, whereas the second decoder approximates the APPs by combining the results of separately decoded received sequences. Using the proposed algorithms, we evaluate the performance of decoding multiple received sequences by means of achievable information rates and Monte-Carlo simulations. We show significant performance gains compared to a single received sequence.

تحميل البحث