ﻻ يوجد ملخص باللغة العربية
We calculate the conversion from non-adiabatic, non-radial oscillations tidally induced by a hot Jupiter on a star to observable spectroscopic and photometric signals. Models with both frozen convection and an approximation for a perturbation to the convective flux are discussed. Observables are calculated for some real planetary systems to give specific predictions. Time-dependent line broadening and the radial velocity signal during transit are both investigated as methods to provide further insight into the nature of the stellar oscillations. The photometric signal is predicted to be proportional to the inverse square of the orbital period, $P^{-2}$, as in the equilibrium tide approximation. However, the radial velocity signal is predicted to be proportional to $ P^{-1}$, and is therefore much larger at long orbital periods than the signal corresponding to the equilibrium tide approximation, which is proportional to $P^{-3}$. The prospects for detecting these oscillations and the implications for the detection and characterisation of planets are discussed.
Heartbeat stars are a class of eccentric binary stars with short-period orbits and characteristic heartbeat signals in their light curves at periastron, caused primarily by tidal distortion. In many heartbeat stars, tidally excited oscillations can b
A recent observational study suggests that the occurrence of hot Jupiters (HJs) around solar-type stars is correlated with stellar clustering. We study a new scenario for HJ formation, called Flyby Induced High-e Migration, that may help explain this
The observed low densities of gas giant planets with a high equilibrium temperature can be simulated in models when a fraction of the surface radiation is deposited deeper in the interior. Meanwhile migration theories suggest that hot Jupiters formed
Short period planets are subject to intense energetic irradiations from their stars. It has been shown that this can lead to significant atmospheric mass-loss and create smaller mass planets. Here, we analyse whether the evaporation mechanism can aff
Several authors have shown that precise measurements of transit time variations of exoplanets can be sensitive to other planetary bodies, such as exo-moons. In addition, the transit timing variations of the exoplanets closest to their host stars can