ﻻ يوجد ملخص باللغة العربية
Polynomial eigenvalue problems (PEPs) arise in a variety of science and engineering applications, and many breakthroughs in the development of classical algorithms to solve PEPs have been made in the past decades. Here we attempt to solve PEPs in a quantum computer. Firstly, for generalized eigenvalue problems (GEPs) $Ax = lambda Bx$ with $A,B$ symmetric, and $B$ positive definite, we give a quantum algorithm based on block-encoding and quantum phase estimation. In a more general case when $B$ is invertible, $B^{-1}A$ is diagonalizable and all the eigenvalues are real, we propose a quantum algorithm based on the Fourier spectral method to solve ordinary differential equations (ODEs). The inputs of our algorithms can be any desired states, and the outputs are superpositions of the eigenpairs. The complexities are polylog in the matrix size and linear in the precision. The dependence on precision is optimal. Secondly, we show that when $B$ is singular, any quantum algorithm uses at least $Omega(sqrt{n})$ queries to compute the eigenvalues, where $n$ is the matrix size. Thirdly, based on the linearization method and the connection between PEPs and higher-order ODEs, we provide two quantum algorithms to solve PEPs by extending the quantum algorithm for GEPs. We also give detailed complexity analysis of the algorithm for two special types of quadratic eigenvalue problems that are important in practice. Finally, under an extra assumption, we propose a quantum algorithm to solve PEPs when the eigenvalues are complex.
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear or
We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system $Ax = b$, we show that there is a classical algorithm that outputs a dat
Pole-swapping algorithms are generalizations of bulge-chasing algorithms for the generalized eigenvalue problem. Structure-preserving pole-swapping algorithms for the palindromic and alternating eigenvalue problems, which arise in control theory, are
Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources a
SLEPc is a parallel library for the solution of various types of large-scale eigenvalue problems. In the last years we have been developing a module within SLEPc, called NEP, that is intended for solving nonlinear eigenvalue problems. These problems