ترغب بنشر مسار تعليمي؟ اضغط هنا

CompRess: Self-Supervised Learning by Compressing Representations

279   0   0.0 ( 0 )
 نشر من قبل Ajinkya Tejankar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-supervised learning aims to learn good representations with unlabeled data. Recent works have shown that larger models benefit more from self-supervised learning than smaller models. As a result, the gap between supervised and self-supervised learning has been greatly reduced for larger models. In this work, instead of designing a new pseudo task for self-supervised learning, we develop a model compression method to compress an already learned, deep self-supervised model (teacher) to a smaller one (student). We train the student model so that it mimics the relative similarity between the data points in the teachers embedding space. For AlexNet, our method outperforms all previous methods including the fully supervised model on ImageNet linear evaluation (59.0% compared to 56.5%) and on nearest neighbor evaluation (50.7% compared to 41.4%). To the best of our knowledge, this is the first time a self-supervised AlexNet has outperformed supervised one on ImageNet classification. Our code is available here: https://github.com/UMBCvision/CompRess



قيم البحث

اقرأ أيضاً

Advanced self-supervised visual representation learning methods rely on the instance discrimination (ID) pretext task. We point out that the ID task has an implicit semantic consistency (SC) assumption, which may not hold in unconstrained datasets. I n this paper, we propose a novel contrastive mask prediction (CMP) task for visual representation learning and design a mask contrast (MaskCo) framework to implement the idea. MaskCo contrasts region-level features instead of view-level features, which makes it possible to identify the positive sample without any assumptions. To solve the domain gap between masked and unmasked features, we design a dedicated mask prediction head in MaskCo. This module is shown to be the key to the success of the CMP. We evaluated MaskCo on training datasets beyond ImageNet and compare its performance with MoCo V2. Results show that MaskCo achieves comparable performance with MoCo V2 using ImageNet training dataset, but demonstrates a stronger performance across a range of downstream tasks when COCO or Conceptual Captions are used for training. MaskCo provides a promising alternative to the ID-based methods for self-supervised learning in the wild.
Analyzing the story behind TV series and movies often requires understanding who the characters are and what they are doing. With improving deep face models, this may seem like a solved problem. However, as face detectors get better, clustering/ident ification needs to be revisited to address increasing diversity in facial appearance. In this paper, we address video face clustering using unsupervised methods. Our emphasis is on distilling the essential information, identity, from the representations obtained using deep pre-trained face networks. We propose a self-supervised Siamese network that can be trained without the need for video/track based supervision, and thus can also be applied to image collections. We evaluate our proposed method on three video face clustering datasets. The experiments show that our methods outperform current state-of-the-art methods on all datasets. Video face clustering is lacking a common benchmark as current works are often evaluated with different metrics and/or different sets of face tracks.
106 - Yunchuan Chen , Lili Mou , Yan Xu 2016
Neural networks are among the state-of-the-art techniques for language modeling. Existing neural language models typically map discrete words to distributed, dense vector representations. After information processing of the preceding context words by hidden layers, an output layer estimates the probability of the next word. Such approaches are time- and memory-intensive because of the large numbers of parameters for word embeddings and the output layer. In this paper, we propose to compress neural language models by sparse word representations. In the experiments, the number of parameters in our model increases very slowly with the growth of the vocabulary size, which is almost imperceptible. Moreover, our approach not only reduces the parameter space to a large extent, but also improves the performance in terms of the perplexity measure.
Recent advances in self-supervised learning (SSL) have largely closed the gap with supervised ImageNet pretraining. Despite their success these methods have been primarily applied to unlabeled ImageNet images, and show marginal gains when trained on larger sets of uncurated images. We hypothesize that current SSL methods perform best on iconic images, and struggle on complex scene images with many objects. Analyzing contrastive SSL methods shows that they have poor visual grounding and receive poor supervisory signal when trained on scene images. We propose Contrastive Attention-Supervised Tuning(CAST) to overcome these limitations. CAST uses unsupervised saliency maps to intelligently sample crops, and to provide grounding supervision via a Grad-CAM attention loss. Experiments on COCO show that CAST significantly improves the features learned by SSL methods on scene images, and further experiments show that CAST-trained models are more robust to changes in backgrounds.
We present a self-supervised learning approach for optical flow. Our method distills reliable flow estimations from non-occluded pixels, and uses these predictions as ground truth to learn optical flow for hallucinated occlusions. We further design a simple CNN to utilize temporal information from multiple frames for better flow estimation. These two principles lead to an approach that yields the best performance for unsupervised optical flow learning on the challenging benchmarks including MPI Sintel, KITTI 2012 and 2015. More notably, our self-supervised pre-trained model provides an excellent initialization for supervised fine-tuning. Our fine-tuned models achieve state-of-the-art results on all three datasets. At the time of writing, we achieve EPE=4.26 on the Sintel benchmark, outperforming all submitted methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا