ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the LAGO water Cherenkov detectors to cosmic ray flux

207   0   0.0 ( 0 )
 نشر من قبل Hernan Asorey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Latin American Giant Observatory (LAGO) is a distributed cosmic ray observatory that spans over Latin America in a wide range of latitudes and altitudes. One of the main goals of LAGO is to study atmospheric radiation and space weather through the measurement of the secondary particles from cosmic ray flux at ground level using Water Cherenkov Detectors (WCD). Thus, due to differences in the local geomagnetic rigidity cut-off affecting the low energy cosmic rays impinging on the atmosphere and the well-known relation between altitude and the development of the extended atmospheric showers, different secondary particle fluxes are expected at each LAGO site. It is therefore crucial for our objectives to be able to determine the expected flux of secondary particles at any place in the World and for any geomagnetic or atmospheric conditions. To characterize the response of a particular LAGO site we developed ARTI, a complete framework intended to simulate the WCD signals produced by the interaction of the secondary inside the detector. ARTI comprises a simulation sequence by integrating three different simulation tools: a) Magnetocosmics, to account for the geomagnetic field effects on the primary flux; b) CORSIKA, to simulate the atmospheric showers originated on the complete flux of cosmic rays and, thus, to estimate the expected flux of secondary particle at the site; and c) Geant4, for simulating the LAGO detectors response to this secondary flux. In this work, we show the usage of the ARTI framework by calculating the expected flux of signals at eight LAGO sites, covering a wide range of altitudes and rigidity cut-offs to emphasize the capabilities of the LAGO network spanning over Latin America. These results show that we are able to estimate the response of any water Cherenkov detector located at any place in the World, even under evolving atmospheric and geomagnetic conditions.



قيم البحث

اقرأ أيضاً

To characterize the signals registered by the different types of water Cherenkov detectors (WCD) used by the Latin American Giant Observatory (LAGO) Project, it is necessary to develop detailed simulations of the detector response to the flux of seco ndary particles at the detector level. These particles are originated during the interaction of cosmic rays with the atmosphere. In this context, the LAGO project aims to study the high energy component of gamma rays bursts (GRBs) and space weather phenomena by looking for the solar modulation of galactic cosmic rays (GCRs). Focus in this, a complete and complex chain of simulations is being developed that account for geomagnetic effects, atmospheric reaction and detector response at each LAGO site. In this work we shown the first steps of a GEANT4 based simulation for the LAGO WCD, with emphasis on the induced effects of the detector internal diffusive coating.
150 - D. Allard , C. Alvarez , H. Asorey 2009
In order to characterise the behaviour of Water Cherenkov Detectors (WCD) under a sudden increase of 1 GeV - 1 TeV background photons from a Gamma Ray Burst (GRB), simulations were conducted and compared to data acquired by the WCD of the Large Apert ure GRB Observatory (LAGO). The LAGO operates arrays of WCD at high altitude to detect GRBs using the single particle technique. The LAGO sensitivity to GRBs is derived from the reported simulations of the gamma initiated particle showers in the atmosphere and the WCD response to secondaries.
Due to fundamental limitations of accelerators, only cosmic rays can give access to centre-of- mass energies more than one order of magnitude above those reached at the LHC. In fact, extreme energy cosmic rays (1018 eV - 1020 eV) are the only possibi lity to explore the 100 TeV energy scale in the years to come. This leap by one order of magnitude gives a unique way to open new horizons: new families of particles, new physics scales, in-depth investigations of the Lorentz symmetries. However, the flux of cosmic rays decreases rapidly, being less than one particle per square kilometer per year above 1019 eV: one needs to sample large surfaces. A way to develop large-effective area, low cost, detectors, is to build a solar panel-based device which can be used in parallel for power generation and Cherenkov light detection. Using solar panels for Cherenkov light detection would combine power generation and a non-standard detection device.
The atmospheric depth of the air shower maximum $X_{mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{mathrm{max}}$ are performed using obse rvations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov detectors of the Pierre Auger Observatory. The network architecture features recurrent long short-term memory layers to process the temporal structure of signals and hexagonal convolutions to exploit the symmetry of the surface detector array. We evaluate the performance of the network using air showers simulated with three different hadronic interaction models. Thereafter, we account for long-term detector effects and calibrate the reconstructed $X_{mathrm{max}}$ using fluorescence measurements. Finally, we show that the event-by-event resolution in the reconstruction of the shower maximum improves with increasing shower energy and reaches less than $25~mathrm{g/cm^{2}}$ at energies above $2times 10^{19}~mathrm{eV}$.
The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC observatory is an extensive a ir-shower array comprised of 300 optically-isolated water Cherenkov detectors (WCDs). Each WCD contains $sim$200,000 liters of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m$^{2}$, the sensitivity will be 15 times higher than its predecessor Milagro. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 hours of live time between 14 and 15 April of 2013 when 29 WCDs were active.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا