ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing optimal networks for multi-commodity transport problem

53   0   0.0 ( 0 )
 نشر من قبل Alessandro Lonardi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing and optimizing different flows in networks is a relevant problem in many contexts. While a number of methods have been proposed in the physics and optimal transport literature for the one-commodity case, we lack similar results for the multi-commodity scenario. In this paper we present a model based on optimal transport theory for finding optimal multi-commodity flow configurations on networks. This model introduces a dynamics that regulates the edge conductivities to achieve, at infinite times, a minimum of a Lyapunov functional given by the sum of a convex transport cost and a concave infrastructure cost. We show that the long time asymptotics of this dynamics are the solutions of a standard constrained optimization problem that generalizes the one-commodity framework. Our results provide new insights into the nature and properties of optimal network topologies. In particular, they show that loops can arise as a consequence of distinguishing different flow types, complementing previous results where loops, in the one-commodity case, were obtained as a consequence of imposing dynamical rules to the sources and sinks or when enforcing robustness to damage. Finally, we provide an efficient implementation of our model which convergences faster than standard optimization methods based on gradient descent.



قيم البحث

اقرأ أيضاً

We discuss the design of interlayer edges in a multiplex network, under a limited budget, with the goal of improving its overall performance. We analyze the following three problems separately; first, we maximize the smallest nonzero eigenvalue, also known as the algebraic connectivity; secondly, we minimize the largest eigenvalue, also known as the spectral radius; and finally, we minimize the spectral width. Maximizing the algebraic connectivity requires identical weights on the interlayer edges for budgets less than a threshold value. However, for larger budgets, the optimal weights are generally non-uniform. The dual formulation transforms the problem into a graph realization (embedding) problem that allows us to give a fuller picture. Namely, before the threshold budget, the optimal realization is one-dimensional with nodes in the same layer embedded to a single point; while, beyond the threshold, the optimal embeddings generally unfold into spaces with dimension bounded by the multiplicity of the algebraic connectivity. Finally, for extremely large budgets the embeddings revert again to lower dimensions. Minimizing the largest eigenvalue is driven by the spectral radius of the individual networks and its corresponding eigenvector. Before a threshold, the total budget is distributed among interlayer edges corresponding to the nodal lines of this eigenvector, and the optimal largest eigenvalue of the Laplacian remains constant. For larger budgets, the weight distribution tends to be almost uniform. In the dual picture, the optimal graph embedding is one-dimensional and non-homogeneous at first and beyond this threshold, the optimal embedding expands to be multi-dimensional, and for larger values of the budget, the two layers fill the embedding space. Finally, we show how these two problems are connected to minimizing the spectral width.
Time-stamped data are increasingly available for many social, economic, and information systems that can be represented as networks growing with time. The World Wide Web, social contact networks, and citation networks of scientific papers and online news articles, for example, are of this kind. Static methods can be inadequate for the analysis of growing networks as they miss essential information on the systems dynamics. At the same time, time-aware methods require the choice of an observation timescale, yet we lack principled ways to determine it. We focus on the popular community detection problem which aims to partition a networks nodes into meaningful groups. We use a multi-layer quality function to show, on both synthetic and real datasets, that the observation timescale that leads to optimal communities is tightly related to the systems intrinsic aging timescale that can be inferred from the time-stamped network data. The use of temporal information leads to drastically different conclusions on the community structure of real information networks, which challenges the current understanding of the large-scale organization of growing networks. Our findings indicate that before attempting to assess structural patterns of evolving networks, it is vital to uncover the timescales of the dynamical processes that generated them.
Motivated by scheduling in Geo-distributed data analysis, we propose a target location problem for multi-commodity flow (LoMuF for short). Given commodities to be sent from their resources, LoMuF aims at locating their targets so that the multi-commo dity flow is optimized in some sense. LoMuF is a combination of two fundamental problems, namely, the facility location problem and the network flow problem. We study the hardness and algorithmic issues of the problem in various settings. The findings lie in three aspects. First, a series of NP-hardness and APX-hardness results are obtained, uncovering the inherent difficulty in solving this problem. Second, we propose an approximation algorithm for general undirected networks and an exact algorithm for undirected trees, which naturally induce efficient approximation algorithms on directed networks. Third, we observe separations between directed networks and undirected ones, indicating that imposing direction on edges makes the problem strictly harder. These results show the richness of the problem and pave the way to further studies.
Changes in air transport networks over time may be induced by competition among carriers, changes in regulations on airline industry, and socioeconomic events such as terrorist attacks and epidemic outbreaks. Such network changes may reflect corporat e strategies of each carrier. In the present study, we propose a framework for analyzing evolution patterns in temporal networks in discrete time from the viewpoint of recurrence. Recurrence implies that the network structure returns to one relatively close to that in the past. We applied the proposed methods to four major carriers in the US from 1987 to 2019. We found that the carriers were different in terms of the autocorrelation, strength of periodicity, and changes in these quantities across decades. We also found that the network structure of the individual carriers abruptly changes from time to time. Such a network change reflects changes in their operation at their hub airports rather than famous socioeconomic events that look closely related to airline industry. The proposed methods are expected to be useful for revealing, for example, evolution of airline alliances and responses to natural disasters or infectious diseases, as well as characterizing evolution of social, biological, and other networks over time.
How can we find the right graph for semi-supervised learning? In real world applications, the choice of which edges to use for computation is the first step in any graph learning process. Interestingly, there are often many types of similarity availa ble to choose as the edges between nodes, and the choice of edges can drastically affect the performance of downstream semi-supervised learning systems. However, despite the importance of graph design, most of the literature assumes that the graph is static. In this work, we present Grale, a scalable method we have developed to address the problem of graph design for graphs with billions of nodes. Grale operates by fusing together different measures of(potentially weak) similarity to create a graph which exhibits high task-specific homophily between its nodes. Grale is designed for running on large datasets. We have deployed Grale in more than 20 different industrial settings at Google, including datasets which have tens of billions of nodes, and hundreds of trillions of potential edges to score. By employing locality sensitive hashing techniques,we greatly reduce the number of pairs that need to be scored, allowing us to learn a task specific model and build the associated nearest neighbor graph for such datasets in hours, rather than the days or even weeks that might be required otherwise. We illustrate this through a case study where we examine the application of Grale to an abuse classification problem on YouTube with hundreds of million of items. In this application, we find that Grale detects a large number of malicious actors on top of hard-coded rules and content classifiers, increasing the total recall by 89% over those approaches alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا