New Swift monitoring observations of the variable, radio-quiet quasar, PDS 456, are presented. A bright X-ray flare was captured in September 2018, the flux increasing by a factor of 4 and with a doubling time-scale of 2 days. From the light crossing argument, the coronal size is inferred to be about 30 gravitational radii for a black hole mass of $10^{9} {rm M}_{odot}$ and the total flare energy exceeds $10^{51}$ erg. A hardening of the X-ray emission accompanied the flare, with the photon index decreasing from $Gamma=2.2$ to $Gamma=1.7$ and back again. The flare is produced in the X-ray corona, the lack of any optical or UV variability being consistent with a constant accretion rate. Simultaneous XMM-Newton and NuSTAR observations were performed, $1-3$ days after the flare peak and during the decline phase. These caught PDS 456 in a bright, bare state, where no disc wind absorption features are apparent. The hard X-ray spectrum shows a high energy roll-over, with an e-folding energy of $E_{rm fold}=51^{+11}_{-8}$ keV. The deduced coronal temperature, of $kT=13$ keV, is one of the coolest measured in any AGN and PDS 456 lies well below the predicted pair annihilation line in X-ray corona. The spectral variability, becoming softer when fainter following the flare, is consistent with models of cooling X-ray coronae. Alternatively, an increase in a non-thermal component could contribute towards the hard X-ray flare spectrum.