ﻻ يوجد ملخص باللغة العربية
We report the synthesis of single-crystal NbC, a transition metal carbide with various unusual properties. Transport, magnetic susceptibility, and specific heat measurements demonstrate that NbC is a conventional superconductor with a superconducting transition temperature ($T_c$) of 11.5 K. Our theoretical calculations show that NbC is a type-II Dirac semimetal with strong Fermi surface nesting, which is supported by our ARPES measurement results. We also observed the superconducting gaps of NbC using angle-resolved photoemission spectroscopy (ARPES) and found some unconventional behaviors. These intriguing superconducting and topological properties, combined with the high corrosion resistance, make NbC an ideal platform for both fundamental research and device applications.
Fermi surface nesting, as a peculiar reciprocal space feature, is not only closely correlated with the real space superstructure, but also directly modulates the underlying electronic behavior. In this work, we elucidate the Fermi surface nesting fea
Quantum materials with non-trivial band topology and bulk superconductivity are considered superior materials to realize topological superconductivity. In this regard, we report detailed Density Functional Theory (DFT) calculations and Z2 invaraints
The recently discovered Dirac and Weyl semimetals are new members of topological materials. Starting from them, topological superconductivity may be achieved, e.g. by carrier doping or applying pressure. Here we report high-pressure resistance and X-
We report a detailed magnetotransport study on single crystals of PrBi. The presence of $f$-electrons in this material raises the prospect of realizing a strongly correlated version of topological semimetals. PrBi shows a magnetic field induced metal
The interaction between superconductivity and band topology can lead to various unconventional superconducting (SC) states, and represents a new frontier in condensed matter physics research. Recently, the transition metal dichalcogenide (TMD) system