ترغب بنشر مسار تعليمي؟ اضغط هنا

Spiking Neural Networks -- Part III: Neuromorphic Communications

105   0   0.0 ( 0 )
 نشر من قبل Hyeryung Jang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Synergies between wireless communications and artificial intelligence are increasingly motivating research at the intersection of the two fields. On the one hand, the presence of more and more wirelessly connected devices, each with its own data, is driving efforts to export advances in machine learning (ML) from high performance computing facilities, where information is stored and processed in a single location, to distributed, privacy-minded, processing at the end user. On the other hand, ML can address algorithm and model deficits in the optimization of communication protocols. However, implementing ML models for learning and inference on battery-powered devices that are connected via bandwidth-constrained channels remains challenging. This paper explores two ways in which Spiking Neural Networks (SNNs) can help address these open problems. First, we discuss federated learning for the distributed training of SNNs, and then describe the integration of neuromorphic sensing, SNNs, and impulse radio technologies for low-power remote inference.



قيم البحث

اقرأ أيضاً

Spiking Neural Networks (SNNs) are biologically inspired machine learning models that build on dynamic neuronal models processing binary and sparse spiking signals in an event-driven, online, fashion. SNNs can be implemented on neuromorphic computing platforms that are emerging as energy-efficient co-processors for learning and inference. This is the first of a series of three papers that introduce SNNs to an audience of engineers by focusing on models, algorithms, and applications. In this first paper, we first cover neural models used for conventional Artificial Neural Networks (ANNs) and SNNs. Then, we review learning algorithms and applications for SNNs that aim at mimicking the functionality of ANNs by detecting or generating spatial patterns in rate-encoded spiking signals. We specifically discuss ANN-to-SNN conversion and neural sampling. Finally, we validate the capabilities of SNNs for detecting and generating spatial patterns through experiments.
Inspired by the operation of biological brains, Spiking Neural Networks (SNNs) have the unique ability to detect information encoded in spatio-temporal patterns of spiking signals. Examples of data types requiring spatio-temporal processing include l ogs of time stamps, e.g., of tweets, and outputs of neural prostheses and neuromorphic sensors. In this paper, the second of a series of three review papers on SNNs, we first review models and training algorithms for the dominant approach that considers SNNs as a Recurrent Neural Network (RNN) and adapt learning rules based on backpropagation through time to the requirements of SNNs. In order to tackle the non-differentiability of the spiking mechanism, state-of-the-art solutions use surrogate gradients that approximate the threshold activation function with a differentiable function. Then, we describe an alternative approach that relies on probabilistic models for spiking neurons, allowing the derivation of local learning rules via stochastic estimates of the gradient. Finally, experiments are provided for neuromorphic data sets, yielding insights on accuracy and convergence under different SNN models.
We describe a method to train spiking deep networks that can be run using leaky integrate-and-fire (LIF) neurons, achieving state-of-the-art results for spiking LIF networks on five datasets, including the large ImageNet ILSVRC-2012 benchmark. Our me thod for transforming deep artificial neural networks into spiking networks is scalable and works with a wide range of neural nonlinearities. We achieve these results by softening the neural response function, such that its derivative remains bounded, and by training the network with noise to provide robustness against the variability introduced by spikes. Our analysis shows that implementations of these networks on neuromorphic hardware will be many times more power-efficient than the equivalent non-spiking networks on traditional hardware.
Neuromorphic computing systems are embracing memristors to implement high density and low power synaptic storage as crossbar arrays in hardware. These systems are energy efficient in executing Spiking Neural Networks (SNNs). We observe that long bitl ines and wordlines in a memristive crossbar are a major source of parasitic voltage drops, which create current asymmetry. Through circuit simulations, we show the significant endurance variation that results from this asymmetry. Therefore, if the critical memristors (ones with lower endurance) are overutilized, they may lead to a reduction of the crossbars lifetime. We propose eSpine, a novel technique to improve lifetime by incorporating the endurance variation within each crossbar in mapping machine learning workloads, ensuring that synapses with higher activation are always implemented on memristors with higher endurance, and vice versa. eSpine works in two steps. First, it uses the Kernighan-Lin Graph Partitioning algorithm to partition a workload into clusters of neurons and synapses, where each cluster can fit in a crossbar. Second, it uses an instance of Particle Swarm Optimization (PSO) to map clusters to tiles, where the placement of synapses of a cluster to memristors of a crossbar is performed by analyzing their activation within the workload. We evaluate eSpine for a state-of-the-art neuromorphic hardware model with phase-change memory (PCM)-based memristors. Using 10 SNN workloads, we demonstrate a significant improvement in the effective lifetime.
155 - Twisha Titirsha , Anup Das 2020
Hardware implementation of neuromorphic computing can significantly improve performance and energy efficiency of machine learning tasks implemented with spiking neural networks (SNNs), making these hardware platforms particularly suitable for embedde d systems and other energy-constrained environments. We observe that the long bitlines and wordlines in a crossbar of the hardware create significant current variations when propagating spikes through its synaptic elements, which are typically designed with non-volatile memory (NVM). Such current variations create a thermal gradient within each crossbar of the hardware, depending on the machine learning workload and the mapping of neurons and synapses of the workload to these crossbars. mr{This thermal gradient becomes significant at scaled technology nodes and it increases the leakage power in the hardware leading to an increase in the energy consumption.} We propose a novel technique to map neurons and synapses of SNN-based machine learning workloads to neuromorphic hardware. We make two novel contributions. First, we formulate a detailed thermal model for a crossbar in a neuromorphic hardware incorporating workload dependency, where the temperature of each NVM-based synaptic cell is computed considering the thermal contributions from its neighboring cells. Second, we incorporate this thermal model in the mapping of neurons and synapses of SNN-based workloads using a hill-climbing heuristic. The objective is to reduce the thermal gradient in crossbars. We evaluate our neuron and synapse mapping technique using 10 machine learning workloads for a state-of-the-art neuromorphic hardware. We demonstrate an average 11.4K reduction in the average temperature of each crossbar in the hardware, leading to a 52% reduction in the leakage power consumption (11% lower total energy consumption) compared to a performance-oriented SNN mapping technique.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا