ﻻ يوجد ملخص باللغة العربية
Although quantum phase transitions involved with Anderson localization had been investigated for more than a half century, the role of spin polarization in these metal-insulator transitions has not been clearly addressed as a function of both the range of interactions and energy scales. Based on the Anderson-Hartree-Fock study, we reveal that the spin polarization has nothing to do with Anderson metal-insulator transitions in three dimensions as far as effective interactions between electrons are long-ranged Coulomb type. On the other hand, we find that metal-insulator transitions appear with magnetism in the case of Hubbard-type local interactions. In particular, we show that the multifractal spectrum of spin $uparrow$ electrons differs from that of spin $downarrow$ at the high-energy mobility edge, which indicates the existence of spin-dependent universality classes for metal-insulator transitions. One of the most fascinating and rather unexpected results is the appearance of half metals at intermediate energy scales above the high-energy mobility edge in Anderson-type insulators of the Fermi energy, that is, only spin $uparrow$ electrons are delocalized while spin $downarrow$ electrons are Anderson-type localized.
We consider the orthogonality catastrophe at the Anderson Metal-Insulator transition (AMIT). The typical overlap $F$ between the ground state of a Fermi liquid and the one of the same system with an added potential impurity is found to decay at the A
The combination of strong disorder and many-body interactions in Anderson insulators lead to a variety of intriguing non-equilibrium transport phenomena. These include slow relaxation and a variety of memory effects characteristic of glasses. Here we
We study the properties of the avoided or hidden quantum critical point (AQCP) in three dimensional Dirac and Weyl semi-metals in the presence of short range potential disorder. By computing the averaged density of states (along with its second and f
We study a dual flavor fermion model where each of the flavors form a Sachdev-Ye-Kitaev (SYK) system with arbitrary and possibly distinct $q$-body interactions. The crucial new element is an arbitrary all-to-all $r$-body interaction between the two f
The boundary condition dependence of the critical behavior for the three dimensional Anderson transition is investigated. A strong dependence of the scaling function and the critical conductance distribution on the boundary conditions is found, while