ﻻ يوجد ملخص باللغة العربية
Adversarial formulations such as generative adversarial networks (GANs) have rekindled interest in two-player min-max games. A central obstacle in the optimization of such games is the rotational dynamics that hinder their convergence. Existing methods typically employ intuitive, carefully hand-designed mechanisms for controlling such rotations. In this paper, we take a novel approach to address this issue by casting min-max optimization as a physical system. We leverage tools from physics to introduce LEAD (Least-Action Dynamics), a second-order optimizer for min-max games. Next, using Lyapunov stability theory and spectral analysis, we study LEADs convergence properties in continuous and discrete-time settings for bilinear games to demonstrate linear convergence to the Nash equilibrium. Finally, we empirically evaluate our method on synthetic setups and CIFAR-10 image generation to demonstrate improvements over baseline methods.
Many recent AI architectures are inspired by zero-sum games, however, the behavior of their dynamics is still not well understood. Inspired by this, we study standard gradient descent ascent (GDA) dynamics in a specific class of non-convex non-concav
Distributionally robust supervised learning (DRSL) is emerging as a key paradigm for building reliable machine learning systems for real-world applications -- reflecting the need for classifiers and predictive models that are robust to the distributi
We resolve the min-max complexity of distributed stochastic convex optimization (up to a log factor) in the intermittent communication setting, where $M$ machines work in parallel over the course of $R$ rounds of communication to optimize the objecti
We provide a first-order oracle complexity lower bound for finding stationary points of min-max optimization problems where the objective function is smooth, nonconvex in the minimization variable, and strongly concave in the maximization variable. W
Min-max saddle point games appear in a wide range of applications in machine leaning and signal processing. Despite their wide applicability, theoretical studies are mostly limited to the special convex-concave structure. While some recent works gene