ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk dominated galaxies retain their shapes below $z = 1.0$

95   0   0.0 ( 0 )
 نشر من قبل Kai Hoffmann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high abundance of disk galaxies without a large central bulge challenges predictions of current hydrodynamic simulations of galaxy formation. We aim to shed light on the formation of these objects by studying the redshift and mass dependence of their 3D shape distribution in the COSMOS galaxy survey. This distribution is inferred from the observed distribution of 2D shapes, using a reconstruction method which we test using hydrodynamic simulations. We find a moderate bias for the inferred average disk circularity and relative thickness with respect to the disk radius, but a large bias on the dispersion of these quantities. Applying the 3D shape reconstruction method on COSMOS data, we find no significant dependence of the inferred 3D shape distribution on redshift. The relative disk thickness shows a significant mass dependence which can be accounted for by the scaling of disk radius with galaxy mass. We conclude that the shapes of disk dominated galaxies are overall not subject to disruptive merging or feedback events below redshift $z=1.0$. This favours a scenario where these disks form early and subsequently undergo a tranquil evolution in isolation. In addition, our study shows that the observed 2D shapes of disk dominated galaxies can be well fitted using an ellipsoidal model for the galaxy 3D morphology combined with a Gaussian model for the 3D axes ratio distribution, confirming findings from similar work reported in the literature. Such an approach allows to build realistic mock catalogs with intrinsic galaxy shapes that will be essential for the study of intrinsic galaxy alignment as a contaminant of weak lensing surveys.



قيم البحث

اقرأ أيضاً

To break the degeneracy among galactic stellar components, we extract kinematic structures using the framework described in Du et al. (2019, 2020). For example, the concept of stellar halos is generalized to weakly-rotating structures that are compos ed of loosely bound stars, which can hence be associated to both disk and elliptical type morphologies. By applying this method to central galaxies with stellar mass $10^{10-11.5} M_odot$ from the TNG50 simulation, we identify three broadly-defined types of galaxies: ones dominated by disk, by bulge, or by stellar halo structures. We then use the simulation to infer the underlying connection between the growth of structures and physical processes over cosmic time. Tracing galaxies back in time, we recognize three fundamental regimes: an early phase of evolution ($zgtrsim2$), and internal and external (mainly mergers) processes that act at later times. We find that disk- and bulge-dominated galaxies are not significantly affected by mergers since $zsim2$; the difference in their present-day structures originates from two distinct evolutionary pathways, extended vs. compact, that are likely determined by their parent dark matter halos; i.e., nature. On the other hand, slow rotator elliptical galaxies are typically halo-dominated, forming by external processes (e.g. mergers) in the later phase, i.e., nurture. This picture challenges the general idea that elliptical galaxies are the same objects as classical bulges. In observations, both bulge- and halo-dominated galaxies are likely to be classified as early-type galaxies with compact morphology and quiescent star formation. However, here we find them to have very different evolutionary histories.
232 - Fabio D. Barazza 2007
We present a study of large-scale bars in the local Universe, based on a large sample of ~3692 galaxies, with -18.5 <= M_g < -22.0 mag and redshift 0.01 <= z < 0.03, drawn from the Sloan Digitized Sky Survey. Our sample includes many galaxies that ar e disk-dominated and of late Hubble types. Both color cuts and Sersic cuts yield a similar sample of ~2000 disk galaxies. We characterize bars and disks by ellipse-fitting r-band images and applying quantitative criteria. After excluding highly inclined ($>60^{circ}$) systems, we find the following results. (1) The optical r-band fraction (f_opt-r) of barred galaxies, when averaged over the whole sample, is ~48%-52%. (2) When galaxies are separated according to half light radius (r_e), or normalized r_e/R_24, which is a measure of the bulge-to-disk (B/D) ratio, a remarkable result is seen: f_opt-r rises sharply, from ~40% in galaxies that have small r_e/R_24 and visually appear to host prominent bulges, to ~70% for galaxies that have large r_e/R_24 and appear disk-dominated. (3) $f_{rm opt-r}$ rises for galaxies with bluer colors (by ~30%) and lower masses (by ~15%-20%). (4) While hierarchical $Lambda$CDM models of galaxy evolution models fail to produce galaxies without classical bulges, our study finds that ~20% of disk galaxies appear to be ``quasi-bulgeless. (5) After applying the same cutoffs in magnitude (M_V<-19.3 mag), bar size (a_bar >= 1.5 kpc), and bar ellipticity (e_bar >=~0.4) that studies out to z~1 apply to ensure a complete sample, adequate spatial resolution, and reliable bar identification, we obtain an optical r-band bar fraction of 34%. This is comparable to the value reported at z~0.2-1.0, implying that the optical bar fraction does not decline dramatically by an order of magnitude in bright galaxies out to z~1. (abridged)
108 - R. De Propris 2015
We have carried out a joint photometric and structural analysis of red sequence galaxies in four clusters at a mean redshift of z ~ 1.25 using optical and near-IR HST imaging reaching to at least 3 magnitudes fainter than $M^*$. As expected, the phot ometry and overall galaxy sizes imply purely passive evolution of stellar populations in red sequence cluster galaxies. However, the morphologies of red sequence cluster galaxies at these redshifts show significant differences to those of local counterparts. Apart from the most massive galaxies, the high redshift red sequence galaxies are significantly diskier than their low redshift analogues. These galaxies also show significant colour gradients, again not present in their low redshift equivalents, most straightforwardly explained by radial age gradients. A clear implication of these findings is that red sequence cluster galaxies originally arrive on the sequence as disk-dominated galaxies whose disks subsequently fade or evolve secularly to end up as high Sersic index early-type galaxies (classical S0s or possibly ellipticals) at lower redshift. The apparent lack of growth seen in a comparison of high and low redshift red sequence galaxies implies that any evolution is internal and is unlikely to involve significant mergers. While significant star formation may have ended at high redshift, the cluster red sequence population continues to evolve (morphologically) for several Gyrs thereafter.
We investigate the relationship between environment and galaxy evolution in the redshift range $0.5 < z < 1.0$. Galaxy overdensities are selected using a Friends-of-Friends algorithm, applied to deep photometric data in the Ultra-Deep Survey (UDS) fi eld. A study of the resulting stellar mass functions reveals clear differences between cluster and field environments, with a strong excess of low-mass rapidly quenched galaxies in cluster environments compared to the field. Cluster environments also show a corresponding deficit of young, low-mass star-forming galaxies, which show a sharp radial decline towards cluster centres. By comparing mass functions and radial distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different timescales. Fast quenching acts on galaxies with high specific star-formation rates, operating on timescales shorter than the cluster dynamical time ($ < 1$ Gyr). In contrast, slow quenching affects galaxies with moderate specific star-formation rates, regardless of their stellar mass, and acts on longer timescales ($gtrsim 1$ Gyr). Of the cluster galaxies in the stellar mass range $9.0 < log(M_{*}/M_{odot}) < 10.5$ quenched during this epoch, we find that 73% were transformed through fast quenching, while the remaining 27% followed the slow quenching route.
219 - Shi-Ying Lu 2019
Based on a large sample of massive ($M_{*}geq 10^{10} M_{odot}$) compact galaxies at $1.0 < z < 3.0$ in five 3D-HST/CANDELS fields, we quantify the fractional abundance and comoving number density of massive compact galaxies as a function of redshift . The samples of compact quiescent galaxies (cQGs) and compact star-forming galaxies (cSFGs) are constructed by various selection criteria of compact galaxies in literatures, and the effect of compactness definition on abundance estimate is proved to be remarkable, particularly for the cQGs and cSFGs at high redshifts. Regardless of the compactness criteria adopted, their overall redshift evolutions of fractional abundance and number density are found to be rather similar. Large samples of the cQGs exhibit a sustaining increase in number density from $z sim 3$ to 2 and a plateau at $1<z<2$. For massive cSFGs, a plateau in the number density at $2<z<3$ can be found, as well as a continuous drop from $z sim 2$ to 1. The evolutionary trends of the cQG and cSFG abundances support the scenario that the cSFGs at $z geq 2$ may have been rapidly quenched into quiescent phase via violent dissipational processes such as major merger and disk instabilities. Rarity of the cSFGs at lower redshifts ($z < 1$) can be interpreted by the decrease of gas reservoirs in dark matter halos and the consequent low efficiency of gas-rich dissipation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا