ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-planar cusp and transcendental anomalous dimension at four loops in N=4 supersymmetric Yang-Mills theory

101   0   0.0 ( 0 )
 نشر من قبل Vitaly Velizhanin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the nonplanar contribution to the universal anomalous dimension of the SU(4)-singlet twist-two operators in N=4 supersymmetric Yang-Mills theory at four loops through Lorentz spin 18. From this, we numerically evaluate the nonplanar contribution to the four-loop lightlike cusp anomalous dimension and derive the transcendental $zeta_3$ and $zeta_5$ parts of the universal anomalous dimension for arbitrary Lorentz spin in analytic form. As for the lightlike cusp anomalous dimension and the $zeta_5$ part of the universal anomalous dimension, we confirm previous results.



قيم البحث

اقرأ أيضاً

We construct an exact analytical solution to the integral equation which is believed to describe logarithmic growth of the anomalous dimensions of high spin operators in planar N=4 super Yang-Mills theory and use it to determine the strong coupling expansion of the cusp anomalous dimension.
We present numerical results for the nonplanar lightlike cusp and collinear anomalous dimension at four loops in ${mathcal N} = 4$ SYM theory, which we infer from a calculation of the Sudakov form factor. The latter is expressed as a rational linear combination of uniformly transcendental integrals for arbitrary colour factor. Numerical integration in the nonplanar sector reveals explicitly the breakdown of quadratic Casimir scaling at the four-loop order. A thorough analysis of the reported numerical uncertainties is carried out.
We present the complete formula for the cusp anomalous dimension at four loops in QCD and in maximally supersymmetric Yang-Mills. In the latter theory it is given by begin{equation} {Gamma}^{rm}_{rm cusp}Big|_{alpha_s^4} = -left( frac{alpha_s N}{pi }right)^4 left[ frac{73 pi^6}{20160} + frac{ zeta_{3}^2}{8} + frac{1}{N^2} left( frac{31pi^6}{5040} + frac{9 zeta_3^2}{4} right) right] ,. onumber end{equation} Our approach is based on computing the correlation function of a rectangular light-like Wilson loop with a Lagrangian insertion, normalized by the expectation value of the Wilson loop. In maximally supersymmetric Yang-Mills theory, this ratio is a finite function of a cross-ratio and the coupling constant. We compute it to three loops, including the full colour dependence. Integrating over the position of the Lagrangian insertion gives the four-loop Wilson loop. We extract its leading divergence, which determines the four-loop cusp anomalous dimension. Finally, we employ a supersymmetric decomposition to derive the last missing ingredient in the corresponding QCD result.
We compute the non-planar contribution to the universal anomalous dimension of twist-two operators in N=4 supersymmetric Yang-Mills theory at four loops through Lorentz spin eighteen. Exploiting the results of this and our previous calculations along with recent analytic results for the cusp anomalous dimension and some expected analytic properties, we reconstruct a general expression valid for arbitrary Lorentz spin. We study various properties of this general result, such as its large-spin limit, its small-x limit, and others. In particular, we present a prediction for the non-planar contribution to the anomalous dimension of the single-magnon operator in the beta-deformed version of the theory.
We compute the six-particle maximally-helicity-violating (MHV) and next-to-MHV (NMHV) amplitudes in planar maximally supersymmetric Yang-Mills theory through seven loops and six loops, respectively, as an application of the extended Steinmann relatio ns and using the cosmic Galois coaction principle. Starting from a minimal space of functions constructed using these principles, we identify the amplitude by matching its symmetries and predicted behavior in various kinematic limits. Through five loops, the MHV and NMHV amplitudes are uniquely determined using only the multi-Regge and leading collinear limits. Beyond five loops, the MHV amplitude requires additional data from the kinematic expansion around the collinear limit, which we obtain from the Pentagon Operator Product Expansion, and in particular from its single-gluon bound state contribution. We study the MHV amplitude in the self-crossing limit, where its singular terms agree with previous predictions. Analyzing and plotting the amplitudes along various kinematical lines, we continue to find remarkable stability between loop orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا