ﻻ يوجد ملخص باللغة العربية
A critical task in graph signal processing is to estimate the true signal from noisy observations over a subset of nodes, also known as the reconstruction problem. In this paper, we propose a node-adaptive regularization for graph signal reconstruction, which surmounts the conventional Tikhonov regularization, giving rise to more degrees of freedom; hence, an improved performance. We formulate the node-adaptive graph signal denoising problem, study its bias-variance trade-off, and identify conditions under which a lower mean squared error and variance can be obtained with respect to Tikhonov regularization. Compared with existing approaches, the node-adaptive regularization enjoys more general priors on the local signal variation, which can be obtained by optimally designing the regularization weights based on Pronys method or semidefinite programming. As these approaches require additional prior knowledge, we also propose a minimax (worst-case) strategy to address instances where this extra information is unavailable. Numerical experiments with synthetic and real data corroborate the proposed regularization strategy for graph signal denoising and interpolation, and show its improved performance compared with competing alternatives.
This study addresses the problem of discrete signal reconstruction from the perspective of sparse Bayesian learning (SBL). Generally, it is intractable to perform the Bayesian inference with the ideal discretization prior under the SBL framework. To
For the interpolation of graph signals with generalized shifts of a graph basis function (GBF), we introduce the concept of positive definite functions on graphs. This concept merges kernel-based interpolation with spectral theory on graphs and can b
Graph signal processing (GSP) is an emerging field developed for analyzing signals defined on irregular spatial structures modeled as graphs. Given the considerable literature regarding the resilience of infrastructure networks using graph theory, it
Exponential is a basic signal form, and how to fast acquire this signal is one of the fundamental problems and frontiers in signal processing. To achieve this goal, partial data may be acquired but result in the severe artifacts in its spectrum, whic
Because of its self-regularizing nature and uncertainty estimation, the Bayesian approach has achieved excellent recovery performance across a wide range of sparse signal recovery applications. However, most methods are based on the real-value signal