ترغب بنشر مسار تعليمي؟ اضغط هنا

AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in the Wild

88   0   0.0 ( 0 )
 نشر من قبل Zhe Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Occlusion is probably the biggest challenge for human pose estimation in the wild. Typical solutions often rely on intrusive sensors such as IMUs to detect occluded joints. To make the task truly unconstrained, we present AdaFuse, an adaptive multiview fusion method, which can enhance the features in occluded views by leveraging those in visible views. The core of AdaFuse is to determine the point-point correspondence between two views which we solve effectively by exploring the sparsity of the heatmap representation. We also learn an adaptive fusion weight for each camera view to reflect its feature quality in order to reduce the chance that good features are undesirably corrupted by ``bad views. The fusion model is trained end-to-end with the pose estimation network, and can be directly applied to new camera configurations without additional adaptation. We extensively evaluate the approach on three public datasets including Human3.6M, Total Capture and CMU Panoptic. It outperforms the state-of-the-arts on all of them. We also create a large scale synthetic dataset Occlusion-Person, which allows us to perform numerical evaluation on the occluded joints, as it provides occlusion labels for every joint in the images. The dataset and code are released at https://github.com/zhezh/adafuse-3d-human-pose.



قيم البحث

اقرأ أيضاً

89 - Sheng Jin , Lumin Xu , Jin Xu 2020
This paper investigates the task of 2D human whole-body pose estimation, which aims to localize dense landmarks on the entire human body including face, hands, body, and feet. As existing datasets do not have whole-body annotations, previous methods have to assemble different deep models trained independently on different datasets of the human face, hand, and body, struggling with dataset biases and large model complexity. To fill in this blank, we introduce COCO-WholeBody which extends COCO dataset with whole-body annotations. To our best knowledge, it is the first benchmark that has manual annotations on the entire human body, including 133 dense landmarks with 68 on the face, 42 on hands and 23 on the body and feet. A single-network model, named ZoomNet, is devised to take into account the hierarchical structure of the full human body to solve the scale variation of different body parts of the same person. ZoomNet is able to significantly outperform existing methods on the proposed COCO-WholeBody dataset. Extensive experiments show that COCO-WholeBody not only can be used to train deep models from scratch for whole-body pose estimation but also can serve as a powerful pre-training dataset for many different tasks such as facial landmark detection and hand keypoint estimation. The dataset is publicly available at https://github.com/jin-s13/COCO-WholeBody.
We propose a method for multi-person detection and 2-D pose estimation that achieves state-of-art results on the challenging COCO keypoints task. It is a simple, yet powerful, top-down approach consisting of two stages. In the first stage, we predi ct the location and scale of boxes which are likely to contain people; for this we use the Faster RCNN detector. In the second stage, we estimate the keypoints of the person potentially contained in each proposed bounding box. For each keypoint type we predict dense heatmaps and offsets using a fully convolutional ResNet. To combine these outputs we introduce a novel aggregation procedure to obtain highly localized keypoint predictions. We also use a novel form of keypoint-based Non-Maximum-Suppression (NMS), instead of the cruder box-level NMS, and a novel form of keypoint-based confidence score estimation, instead of box-level scoring. Trained on COCO data alone, our final system achieves average precision of 0.649 on the COCO test-dev set and the 0.643 test-standard sets, outperforming the winner of the 2016 COCO keypoints challenge and other recent state-of-art. Further, by using additional in-house labeled data we obtain an even higher average precision of 0.685 on the test-dev set and 0.673 on the test-standard set, more than 5% absolute improvement compared to the previous best performing method on the same dataset.
Predicting 3D human pose from images has seen great recent improvements. Novel approaches that can even predict both pose and shape from a single input image have been introduced, often relying on a parametric model of the human body such as SMPL. Wh ile qualitative results for such methods are often shown for images captured in-the-wild, a proper benchmark in such conditions is still missing, as it is cumbersome to obtain ground-truth 3D poses elsewhere than in a motion capture room. This paper presents a pipeline to easily produce and validate such a dataset with accurate ground-truth, with which we benchmark recent 3D human pose estimation methods in-the-wild. We make use of the recently introduced Mannequin Challenge dataset which contains in-the-wild videos of people frozen in action like statues and leverage the fact that people are static and the camera moving to accurately fit the SMPL model on the sequences. A total of 24,428 frames with registered body models are then selected from 567 scenes at almost no cost, using only online RGB videos. We benchmark state-of-the-art SMPL-based human pose estimation methods on this dataset. Our results highlight that challenges remain, in particular for difficult poses or for scenes where the persons are partially truncated or occluded.
The best performing methods for 3D human pose estimation from monocular images require large amounts of in-the-wild 2D and controlled 3D pose annotated datasets which are costly and require sophisticated systems to acquire. To reduce this annotation dependency, we propose Multiview-Consistent Semi Supervised Learning (MCSS) framework that utilizes similarity in pose information from unannotated, uncalibrated but synchronized multi-view videos of human motions as additional weak supervision signal to guide 3D human pose regression. Our framework applies hard-negative mining based on temporal relations in multi-view videos to arrive at a multi-view consistent pose embedding. When jointly trained with limited 3D pose annotations, our approach improves the baseline by 25% and state-of-the-art by 8.7%, whilst using substantially smaller networks. Lastly, but importantly, we demonstrate the advantages of the learned embedding and establish view-invariant pose retrieval benchmarks on two popular, publicly available multi-view human pose datasets, Human 3.6M and MPI-INF-3DHP, to facilitate future research.
Most existing human pose estimation (HPE) methods exploit multi-scale information by fusing feature maps of four different spatial sizes, ie $1/4$, $1/8$, $1/16$, and $1/32$ of the input image. There are two drawbacks of this strategy: 1) feature map s of different spatial sizes may be not well aligned spatially, which potentially hurts the accuracy of keypoint location; 2) these scales are fixed and inflexible, which may restrict the generalization ability over various human sizes. Towards these issues, we propose an adaptive dilated convolution (ADC). It can generate and fuse multi-scale features of the same spatial sizes by setting different dilation rates for different channels. More importantly, these dilation rates are generated by a regression module. It enables ADC to adaptively adjust the fused scales and thus ADC may generalize better to various human sizes. ADC can be end-to-end trained and easily plugged into existing methods. Extensive experiments show that ADC can bring consistent improvements to various HPE methods. The source codes will be released for further research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا