ﻻ يوجد ملخص باللغة العربية
Neural networks have achieved remarkable successes in machine learning tasks. This has recently been extended to graph learning using neural networks. However, there is limited theoretical work in understanding how and when they perform well, especially relative to established statistical learning techniques such as spectral embedding. In this short paper, we present a simple generative model where unsupervised graph convolutional network fails, while the adjacency spectral embedding succeeds. Specifically, unsupervised graph convolutional network is unable to look beyond the first eigenvector in certain approximately regular graphs, thus missing inference signals in non-leading eigenvectors. The phenomenon is demonstrated by visual illustrations and comprehensive simulations.
Discrete Fourier transforms provide a significant speedup in the computation of convolutions in deep learning. In this work, we demonstrate that, beyond its advantages for efficient computation, the spectral domain also provides a powerful representa
We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a seq
Graph convolutional network (GCN) is generalization of convolutional neural network (CNN) to work with arbitrarily structured graphs. A binary adjacency matrix is commonly used in training a GCN. Recently, the attention mechanism allows the network t
Graph convolutional networks (GCNs) are a widely used method for graph representation learning. To elucidate the capabilities and limitations of GCNs, we investigate their power, as a function of their number of layers, to distinguish between differe
This paper introduces a generalization of Convolutional Neural Networks (CNNs) from low-dimensional grid data, such as images, to graph-structured data. We propose a novel spatial convolution utilizing a random walk to uncover the relations within th