ﻻ يوجد ملخص باللغة العربية
Commonsense knowledge is critical in human reading comprehension. While machine comprehension has made significant progress in recent years, the ability in handling commonsense knowledge remains limited. Synonyms are one of the most widely used commonsense knowledge. Constructing adversarial dataset is an important approach to find weak points of machine comprehension models and support the design of solutions. To investigate machine comprehension models ability in handling the commonsense knowledge, we created a Question and Answer Dataset with common knowledge of Synonyms (QADS). QADS are questions generated based on SQuAD 2.0 by applying commonsense knowledge of synonyms. The synonyms are extracted from WordNet. Words often have multiple meanings and synonyms. We used an enhanced Lesk algorithm to perform word sense disambiguation to identify synonyms for the context. ELECTRA achieves the state-of-art result on the SQuAD 2.0 dataset in 2019. With scale, ELECTRA can achieve similar performance as BERT does. However, QADS shows that ELECTRA has little ability to handle commonsense knowledge of synonyms. In our experiment, ELECTRA-small can achieve 70% accuracy on SQuAD 2.0, but only 20% on QADS. ELECTRA-large did not perform much better. Its accuracy on SQuAD 2.0 is 88% but dropped significantly to 26% on QADS. In our earlier experiments, BERT, although also failed badly on QADS, was not as bad as ELECTRA. The result shows that even top-performing NLP models have little ability to handle commonsense knowledge which is essential in reading comprehension.
Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al.,
Reasoning over commonsense knowledge bases (CSKB) whose elements are in the form of free-text is an important yet hard task in NLP. While CSKB completion only fills the missing links within the domain of the CSKB, CSKB population is alternatively pro
In this paper, we present CogNet, a knowledge base (KB) dedicated to integrating three types of knowledge: (1) linguistic knowledge from FrameNet, which schematically describes situations, objects and events. (2) world knowledge from YAGO, Freebase,
LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically found near each other in real life. In this paper, we study how to automatically extract such relationship through a sentence-level relation cl
Question generation (QG) is to generate natural and grammatical questions that can be answered by a specific answer for a given context. Previous sequence-to-sequence models suffer from a problem that asking high-quality questions requires commonsens