ﻻ يوجد ملخص باللغة العربية
The estimation of more than one parameter in quantum mechanics is a fundamental problem with relevant practical applications. In fact, the ultimate limits in the achievable estimation precision are ultimately linked with the non-commutativity of different observables, a peculiar property of quantum mechanics. We here consider several estimation problems for qubit systems and evaluate the corresponding quantumness R, a measure that has been recently introduced in order to quantify how much incompatible are the parameters to be estimated. In particular, R is an upper bound for the renormalized difference between the (asymptotically achievable) Holevo bound and the SLD Cramer-Rao bound (i.e. the matrix generalization of the single-parameter quantum Cramer-Rao bound). For all the estimation problems considered, we evaluate the quantumness R and, in order to better understand its usefulness in characterizing a multiparameter quantum statistical model, we compare it with the renormalized difference between the Holevo and the SLD-bound. Our results give evidence that R is a useful quantity to characterize multiparameter estimation problems, as for several quantum statistical model it is equal to the difference between the bounds and, in general, their behaviour qualitatively coincide. On the other hand, we also find evidence that for certain quantum statistical models the bound is not in tight, and thus R may overestimate the degree of quantum incompatibility between parameters.
We introduce a new information theoretic measure of quantum correlations for multiparticle systems. We use a form of multivariate mutual information -- the interaction information and generalize it to multiparticle quantum systems. There are a number
In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incom
It was suggested in Ref. [Phys. Rev. Lett. 114, 170802] that optical networks with relatively inexpensive overhead---single photon Fock states, passive optical elements, and single photon detection---can show significant improvements over classical s
We address the use of asymptotic incompatibility (AI) to assess the quantumness of a multiparameter quantum statistical model. AI is a recently introduced measure which quantifies the difference between the Holevo and the SLD scalar bounds, and can b
Simultaneous quantum estimation of multiple parameters has recently become essential in quantum metrology. Although the ultimate sensitivity of a multiparameter quantum estimation in noiseless environments can beat the standard quantum limit that eve