ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Implicitly with Noisy Data in Linear Arithmetic

64   0   0.0 ( 0 )
 نشر من قبل Alexander Rader
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Robust learning in expressive languages with real-world data continues to be a challenging task. Numerous conventional methods appeal to heuristics without any assurances of robustness. While probably approximately correct (PAC) Semantics offers strong guarantees, learning explicit representations is not tractable, even in propositional logic. However, recent work on so-called implicit learning has shown tremendous promise in terms of obtaining polynomial-time results for fragments of first-order logic. In this work, we extend implicit learning in PAC-Semantics to handle noisy data in the form of intervals and threshold uncertainty in the language of linear arithmetic. We prove that our extended framework keeps the existing polynomial-time complexity guarantees. Furthermore, we provide the first empirical investigation of this hitherto purely theoretical framework. Using benchmark problems, we show that our implicit approach to learning optimal linear programming objective constraints significantly outperforms an explicit approach in practice.



قيم البحث

اقرأ أيضاً

In situations where explicit communication is limited, human collaborators act by learning to: (i) infer meaning behind their partners actions, and (ii) convey private information about the state to their partner implicitly through actions. The first component of this learning process has been well-studied in multi-agent systems, whereas the second --- which is equally crucial for successful collaboration --- has not. To mimic both components mentioned above, thereby completing the learning process, we introduce a novel algorithm: Policy Belief Learning (PBL). PBL uses a belief module to model the other agents private information and a policy module to form a distribution over actions informed by the belief module. Furthermore, to encourage communication by actions, we propose a novel auxiliary reward which incentivizes one agent to help its partner to make correct inferences about its private information. The auxiliary reward for communication is integrated into the learning of the policy module. We evaluate our approach on a set of environments including a matrix game, particle environment and the non-competitive bidding problem from contract bridge. We show empirically that this auxiliary reward is effective and easy to generalize. These results demonstrate that our PBL algorithm can produce strong pairs of agents in collaborative games where explicit communication is disabled.
We consider the problem of answering queries about formulas of first-order logic based on background knowledge partially represented explicitly as other formulas, and partially represented as examples independently drawn from a fixed probability dist ribution. PAC semantics, introduced by Valiant, is one rigorous, general proposal for learning to reason in formal languages: although weaker than classical entailment, it allows for a powerful model theoretic framework for answering queries while requiring minimal assumptions about the form of the distribution in question. To date, however, the most significant limitation of that approach, and more generally most machine learning approaches with robustness guarantees, is that the logical language is ultimately essentially propositional, with finitely many atoms. Indeed, the theoretical findings on the learning of relational theories in such generality have been resoundingly negative. This is despite the fact that first-order logic is widely argued to be most appropriate for representing human knowledge. In this work, we present a new theoretical approach to robustly learning to reason in first-order logic, and consider universally quantified clauses over a countably infinite domain. Our results exploit symmetries exhibited by constants in the language, and generalize the notion of implicit learnability to show how queries can be computed against (implicitly) learned first-order background knowledge.
We consider the problem of mining signal temporal logical requirements from a dataset of regular (good) and anomalous (bad) trajectories of a dynamical system. We assume the training set to be labeled by human experts and that we have access only to a limited amount of data, typically noisy. We provide a systematic approach to synthesize both the syntactical structure and the parameters of the temporal logic formula using a two-steps procedure: first, we leverage a novel evolutionary algorithm for learning the structure of the formula; second, we perform the parameter synthesis operating on the statistical emulation of the average robustness for a candidate formula w.r.t. its parameters. We compare our results with our previous work [{BufoBSBLB14] and with a recently proposed decision-tree [bombara_decision_2016] based method. We present experimental results on two case studies: an anomalous trajectory detection problem of a naval surveillance system and the characterization of an Ineffective Respiratory effort, showing the usefulness of our work.
In this paper, we consider the setting of graph-structured data that evolves as a result of operations carried out by users or applications. We study different reasoning problems, which range from ensuring the satisfaction of a given set of integrity constraints after a given sequence of updates, to deciding the (non-)existence of a sequence of actions that would take the data to an (un)desirable state, starting either from a specific data instance or from an incomplete description of it. We consider an action language in which actions are finite sequences of conditional insertions and deletions of nodes and labels, and use Description Logics for describing integrity constraints and (partial) states of the data. We then formalize the above data management problems as a static verification problem and several planning problems. We provide algorithms and tight complexity bounds for the formalized problems, both for an expressive DL and for a variant of DL-Lite.
We study the Bayesian inverse problem of learning a linear operator on a Hilbert space from its noisy pointwise evaluations on random input data. Our framework assumes that this target operator is self-adjoint and diagonal in a basis shared with the Gaussian prior and noise covariance operators arising from the imposed statistical model and is able to handle target operators that are compact, bounded, or even unbounded. We establish posterior contraction rates with respect to a family of Bochner norms as the number of data tend to infinity and derive related lower bounds on the estimation error. In the large data limit, we also provide asymptotic convergence rates of suitably defined excess risk and generalization gap functionals associated with the posterior mean point estimator. In doing so, we connect the posterior consistency results to nonparametric learning theory. Furthermore, these convergence rates highlight and quantify the difficulty of learning unbounded linear operators in comparison with the learning of bounded or compact ones. Numerical experiments confirm the theory and demonstrate that similar conclusions may be expected in more general problem settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا