ترغب بنشر مسار تعليمي؟ اضغط هنا

Comments on the symmetry breaking condition in MacDowell-Mansouri action

55   0   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we study the symmetry breaking conditions, given by a (anti)de Sitter-valued vector field, of a full (anti)de Sitter-invariant MacDowell-Mansouri inspired action. We show that under these conditions the action breaks down to General Relativity with a cosmological constant, the four dimensional topological invariants, as well as the Holst term. We obtain the equations of motion of this action, and analyze the symmetry breaking conditions.



قيم البحث

اقرأ أيضاً

In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica part ition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-$N$ Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of $N$ instantons in the model.
Superconformal indices of 4d N=1 SYM theories with SU(N) and SP(2N) gauge groups are investigated for N_f=N and N_f=N+1 flavors, respectively. These indices vanish for generic values of the flavor fugacities. However, for a singular submanifold of fu gacities they behave like the Dirac delta functions and describe the chiral symmetry breaking phenomenon. Similar picture holds for partition functions of 3d supersymmetric field theories with the chiral symmetry breaking.
Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. I n this paper, we discuss the properties of the associated entanglement negativity and its Renyi generalizations in holographic duality. We first review the definition of the Renyi negativities, which contain the familiar logarithmic negativity as a special case. We then study these quantities in the random tensor network model and rigorously derive their large bond dimension asymptotics. Finally, we study entanglement negativity in holographic theories with a gravity dual, where we find that Renyi negativities are often dominated by bulk solutions that break the replica symmetry. From these replica symmetry breaking solutions, we derive general expressions for Renyi negativities and their special limits including the logarithmic negativity. In fixed-area states, these general expressions simplify dramatically and agree precisely with our results in the random tensor network model. This provides a concrete setting for further studying the implications of replica symmetry breaking in holography.
We describe rules for computing a homology theory of knots and links in $mathbb{R}^3$. It is derived from the theory of framed BPS states bound to domain walls separating two-dimensional Landau-Ginzburg models with (2,2) supersymmetry. We illustrate the rules with some sample computations, obtaining results consistent with Khovanov homology. We show that of the two Landau-Ginzburg models discussed in this context by Gaiotto and Witten one, (the so-called Yang-Yang-Landau-Ginzburg model) does not lead to topological invariants of links while the other, based on a model with target space equal to the universal cover of the moduli space of $SU(2)$ magnetic monopoles, will indeed produce a topologically invariant theory of knots and links.
59 - Guo-Zhu Liu , G.Cheng 2001
In three-dimensional QED, which is analyzed in the 1/$N$ expansion, we obtain a sufficient and necessary condition for a nontrivial solution of the Dyson-Schwinger equation to be chiral symmetry breaking solution. In the derivation, a normalization c ondition of the Goldstone bound state is used. It is showed that the existent analytical solutions satisfy this condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا