ﻻ يوجد ملخص باللغة العربية
Werners set-theoretical model is one of the simplest models of CIC. It combines a functional view of predicative universes with a collapsed view of the impredicative sort Prop. However this model of Prop is so coarse that the principle of excluded middle holds. Following our previous work, we interpret Prop into a topological space (a special case of Heyting algebra) to make the model more intuitionistic without sacrificing simplicity. We improve on that work by providing a full interpretation of dependent product types, using Alexandroff spaces. We also extend our approach to inductive types by adding support for lists.
Omega-powers of finitary languages are omega languages in the form V^omega, where V is a finitary language over a finite alphabet X. Since the set of infinite words over X can be equipped with the usual Cantor topology, the question of the topologica
The $omega$-power of a finitary language L over a finite alphabet $Sigma$ is the language of infinite words over $Sigma$ defined by L $infty$ := {w 0 w 1. .. $in$ $Sigma$ $omega$ | $forall$i $in$ $omega$ w i $in$ L}. The $omega$-powers appear very na
We define a family of intuitionistic non-normal modal logics; they can bee seen as intuitionistic counterparts of classical ones. We first consider monomodal logics, which contain only one between Necessity and Possibility. We then consider the more
Locally finite omega languages were introduced by Ressayre in [Journal of Symbolic Logic, Volume 53, No. 4, p.1009-1026]. They generalize omega languages accepted by finite automata or defined by monadic second order sentences. We study here closure
We prove that $omega$-languages of (non-deterministic) Petri nets and $omega$-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of $omega$-languages of (non-determinist