ﻻ يوجد ملخص باللغة العربية
We discuss features of the inflaton potential that can lead to a strong enhancement of the power spectrum of curvature perturbations. We show that a steep decrease of the potential induces an enhancement of the spectrum by several orders of magnitude, which may lead to the production of primordial black holes. The same feature can also create a distinctive oscillatory pattern in the spectrum of gravitational waves generated through the scalar perturbations at second order. We study the additive effect of several such features. We analyse a simplified potential, but also discuss the possible application to supergravity models.
We study the cosmological power spectra (PS) of the differential and integral galaxy volume number densities $gamma_i$ and $gamma_i^{*}$, constructed with the cosmological distances $d_i$ $(i=A,G,L,Z)$, where $d_A$ is the angular diameter distance, $
Standard inflationary models yield a characteristic signature of a primordial power spectrum with a red tensor and scalar tilt. Nevertheless, Cannone et al recently suggested that, by breaking the assumption of spatial diffeomorphism invariance in th
We investigate the potential of the galaxy power spectrum to constrain compensated isocurvature perturbations (CIPs), primordial fluctuations in the baryon density that are compensated by fluctuations in CDM density to ensure an unperturbed total mat
We study single-field inflationary models with steep step-like features in the potential that lead to the temporary violation of the slow-roll conditions during the evolution of the inflaton. These features enhance the power spectrum of the curvature
We place functional constraints on the shape of the inflaton potential from the cosmic microwave background through a variant of the generalized slow roll approximation that allows large amplitude, rapidly changing deviations from scale-free conditio