ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic Quality Assessment of Arguments

102   0   0.0 ( 0 )
 نشر من قبل Henning Wachsmuth
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Several quality dimensions of natural language arguments have been investigated. Some are likely to be reflected in linguistic features (e.g., an arguments arrangement), whereas others depend on context (e.g., relevance) or topic knowledge (e.g., acceptability). In this paper, we study the intrinsic computational assessment of 15 dimensions, i.e., only learning from an arguments text. In systematic experiments with eight feature types on an existing corpus, we observe moderate but significant learning success for most dimensions. Rhetorical quality seems hardest to assess, and subjectivity features turn out strong, although length bias in the corpus impedes full validity. We also find that human assessors differ more clearly to each other than to our approach.



قيم البحث

اقرأ أيضاً

Deciding which scripts to turn into movies is a costly and time-consuming process for filmmakers. Thus, building a tool to aid script selection, an initial phase in movie production, can be very beneficial. Toward that goal, in this work, we present a method to evaluate the quality of a screenplay based on linguistic cues. We address this in a two-fold approach: (1) we define the task as predicting nominations of scripts at major film awards with the hypothesis that the peer-recognized scripts should have a greater chance to succeed. (2) based on industry opinions and narratology, we extract and integrate domain-specific features into common classification techniques. We face two challenges (1) scripts are much longer than other document datasets (2) nominated scripts are limited and thus difficult to collect. However, with narratology-inspired modeling and domain features, our approach offers clear improvements over strong baselines. Our work provides a new approach for future work in screenplay analysis.
Assessing the quality of arguments and of the claims the arguments are composed of has become a key task in computational argumentation. However, even if different claims share the same stance on the same topic, their assessment depends on the prior perception and weighting of the different aspects of the topic being discussed. This renders it difficult to learn topic-independent quality indicators. In this paper, we study claim quality assessment irrespective of discussed aspects by comparing different revisions of the same claim. We compile a large-scale corpus with over 377k claim revision pairs of various types from kialo.com, covering diverse topics from politics, ethics, entertainment, and others. We then propose two tasks: (a) assessing which claim of a revision pair is better, and (b) ranking a
During a psychotherapy session, the counselor typically adopts techniques which are codified along specific dimensions (e.g., displays warmth and confidence, or attempts to set up collaboration) to facilitate the evaluation of the session. Those cons tructs, traditionally scored by trained human raters, reflect the complex nature of psychotherapy and highly depend on the context of the interaction. Recent advances in deep contextualized language models offer an avenue for accurate in-domain linguistic representations which can lead to robust recognition and scoring of such psychotherapy-relevant behavioral constructs, and support quality assurance and supervision. In this work, a BERT-based model is proposed for automatic behavioral scoring of a specific type of psychotherapy, called Cognitive Behavioral Therapy (CBT), where prior work is limited to frequency-based language features and/or short text excerpts which do not capture the unique elements involved in a spontaneous long conversational interaction. The model is trained in a multi-task manner in order to achieve higher interpretability. BERT-based representations are further augmented with available therapy metadata, providing relevant non-linguistic context and leading to consistent performance improvements.
Canonical automatic summary evaluation metrics, such as ROUGE, suffer from two drawbacks. First, semantic similarity and linguistic quality are not captured well. Second, a reference summary, which is expensive or impossible to obtain in many cases, is needed. Existing efforts to address the two drawbacks are done separately and have limitations. To holistically address them, we introduce an end-to-end approach for summary quality assessment by leveraging sentence or document embedding and introducing two negative sampling approaches to create training data for this supervised approach. The proposed approach exhibits promising results on several summarization datasets of various domains including news, legislative bills, scientific papers, and patents. When rating machine-generated summaries in TAC2010, our approach outperforms ROUGE in terms of linguistic quality, and achieves a correlation coefficient of up to 0.5702 with human evaluations in terms of modified pyramid scores. We hope our approach can facilitate summarization research or applications when reference summaries are infeasible or costly to obtain, or when linguistic quality is a focus.
A key factor in designing 3D systems is to understand how different visual cues and distortions affect the perceptual quality of 3D video. The ultimate way to assess video quality is through subjective tests. However, subjective evaluation is time co nsuming, expensive, and in most cases not even possible. An alternative solution is objective quality metrics, which attempt to model the Human Visual System (HVS) in order to assess the perceptual quality. The potential of 3D technology to significantly improve the immersiveness of video content has been hampered by the difficulty of objectively assessing Quality of Experience (QoE). A no-reference (NR) objective 3D quality metric, which could help determine capturing parameters and improve playback perceptual quality, would be welcomed by camera and display manufactures. Network providers would embrace a full-reference (FR) 3D quality metric, as they could use it to ensure efficient QoE-based resource management during compression and Quality of Service (QoS) during transmission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا