ﻻ يوجد ملخص باللغة العربية
For every partial combinatory algebra (pca), we define a hierarchy of extensionality relations using ordinals. We investigate the closure ordinals of pcas, i.e. the smallest ordinals where these relations become equal. We show that the closure ordinal of Kleenes first model is $omega_1^textit{CK}$ and that the closure ordinal of Kleenes second model is $omega_1$. We calculate the exact complexities of the extensionality relations in Kleenes first model, showing that they exhaust the hyperarithmetical hierarchy. We also discuss embeddings of pcas.
An old theorem of Adamek constructs initial algebras for sufficiently cocontinuous endofunctors via transfinite iteration over ordinals in classical set theory. We prove a new version that works in constructive logic, using inflationary iteration ove
These are the lecture notes of an introductory course on ordinal analysis. Our selection of topics is guided by the aim to give a complete and direct proof of a mathematical independence result: Kruskals theorem for binary trees is unprovable in cons
We present three ordinal notation systems representing ordinals below $varepsilon_0$ in type theory, using recent type-theoretical innovations such as mutual inductive-inductive definitions and higher inductive types. We show how ordinal arithmetic c
Let f be a computable function from finite sequences of 0s and 1s to real numbers. We prove that strong f-randomness implies strong f-randomness relative to a PA-degree. We also prove: if X is strongly f-random and Turing reducible to Y where Y is Ma
We consider $omega^n$-automatic structures which are relational structures whose domain and relations are accepted by automata reading ordinal words of length $omega^n$ for some integer $ngeq 1$. We show that all these structures are $omega$-tree-aut