ﻻ يوجد ملخص باللغة العربية
Certain embedding types outperform others in different scenarios, e.g., subword-based embeddings can model rare words well and domain-specific embeddings can better represent in-domain terms. Therefore, recent works consider attention-based meta-embeddings to combine different embedding types. We demonstrate that these methods have two shortcomings: First, the attention weights are calculated without knowledge of word properties. Second, the different embedding types can form clusters in the common embedding space, preventing the computation of a meaningful average of different embeddings and thus, reducing performance. We propose to solve these problems by using feature-based meta-embeddings learned with adversarial training. Our experiments and analysis on sentence classification and sequence tagging tasks show that our approach is effective. We set the new state of the art on various datasets across languages and domains.
Meta-reinforcement learning (meta-RL) aims to learn from multiple training tasks the ability to adapt efficiently to unseen test tasks. Despite the success, existing meta-RL algorithms are known to be sensitive to the task distribution shift. When th
Word embeddings are trained to predict word cooccurrence statistics, which leads them to possess different lexical properties (syntactic, semantic, etc.) depending on the notion of context defined at training time. These properties manifest when quer
Generative adversarial networks (GANs) have succeeded in inducing cross-lingual word embeddings -- maps of matching words across languages -- without supervision. Despite these successes, GANs performance for the difficult case of distant languages i
Meta-learning enables a model to learn from very limited data to undertake a new task. In this paper, we study the general meta-learning with adversarial samples. We present a meta-learning algorithm, ADML (ADversarial Meta-Learner), which leverages
Word embedding models have become a fundamental component in a wide range of Natural Language Processing (NLP) applications. However, embeddings trained on human-generated corpora have been demonstrated to inherit strong gender stereotypes that refle