ﻻ يوجد ملخص باللغة العربية
Natural Language Understanding (NLU) is an established component within a conversational AI or digital assistant system, and it is responsible for producing semantic understanding of a user request. We propose a scalable and automatic approach for improving NLU in a large-scale conversational AI system by leveraging implicit user feedback, with an insight that user interaction data and dialog context have rich information embedded from which user satisfaction and intention can be inferred. In particular, we propose a general domain-agnostic framework for curating new supervision data for improving NLU from live production traffic. With an extensive set of experiments, we show the results of applying the framework and improving NLU for a large-scale production system and show its impact across 10 domains.
We have recently seen the emergence of several publicly available Natural Language Understanding (NLU) toolkits, which map user utterances to structured, but more abstract, Dialogue Act (DA) or Intent specifications, while making this process accessi
Current state-of-the-art large-scale conversational AI or intelligent digital assistant systems in industry comprises a set of components such as Automatic Speech Recognition (ASR) and Natural Language Understanding (NLU). For some of these systems t
We propose a unified Implicit Dialog framework for goal-oriented, information seeking tasks of Conversational Search applications. It aims to enable dialog interactions with domain data without replying on explicitly encoded the rules but utilizing t
In this paper, we introduce How2, a multimodal collection of instructional videos with English subtitles and crowdsourced Portuguese translations. We also present integrated sequence-to-sequence baselines for machine translation, automatic speech rec
In this paper, we propose a robust sequential learning strategy for training large-scale Recommender Systems (RS) over implicit feedback mainly in the form of clicks. Our approach relies on the minimization of a pairwise ranking loss over blocks of c