ﻻ يوجد ملخص باللغة العربية
During the evolution of protoplanetary disks into planetary systems we expect to detect signatures that trace mechanisms such as planet-disk interaction. Protoplanetary disks display a large variety of structures in recently published high-spatial resolution images. However, the three-dimensional morphology of these disks is often difficult to infer from the two-dimensional projected images we observe. We spatially resolve the disk around HD 34282 using VLT/SPHERE in polarimetric imaging mode. We retrieve a profile for the height of the scattering surface to create a height-corrected deprojection, which simulates a face-on orientation. The disk displays a complex scattering surface. An inner clearing or cavity extending up to r<0.28 (88 au) is surrounded by a bright inclined (i = 56 deg) ring with a position angle of 119 deg. The center of this ring is offset from the star along the minor axis with 0.07, which can be explained with a disk-height of 26 au above the mid-plane. Outside this ring, beyond its south-eastern ansa we detect an azimuthal asymmetry or blob at r ~ 0.4. At larger separation, we detect an outer disk structure that can be fitted with an ellipse, compatible with a circular ring seen at r = 0.62 (190 au) and height of 77 au. After applying a height-corrected deprojection we see a circular ring centered on the star at 88 au, while what seemed to be a separate blob and outer ring, now both could be part of a single-armed spiral. Based on the current data it is not possible to conclude decisively whether $H_{rm scat} / r$ remains constant or whether the surface is flared with at most $H_{rm scat} propto r^{1.35}$ , although we favor the constant ratio based on our deprojections. The height-corrected deprojection allows a more detailed interpretation of the observed structures, after which we discern the detection of a single-armed spiral.
Spiral arms have been observed in more than a dozen protoplanetary disks, yet the origin of nearly all systems is under debate. Multi-epoch monitoring of spiral arm morphology offers a dynamical way in distinguishing two leading arm formation mechani
More than a dozen young stars host spiral arms in their surrounding protoplanetary disks. The excitation mechanisms of such arms are under debate. The two leading hypotheses -- companion-disk interaction and gravitational instability (GI) -- predict
[Full abstract in the paper] In recent years, protoplanetary disks with spiral structures have been detected in scattered light, millimeter continuum, and CO gas emission. The mechanisms causing these structures are still under debate. A popular scen
PDS70 is a unique system in which two protoplanets, PDS70b and c, have been discovered within the dust-depleted cavity of their disk, at $sim$22 and 34au respectively, by direct imaging at infrared wavelengths. Subsequent detection of the planets in
We present $L^prime$-band Keck/NIRC2 imaging and $H$-band Subaru/AO188+HiCIAO polarimetric observations of CQ Tau disk with a new spiral arm. Apart from the spiral feature our observations could not detect any companion candidates. We traced the spir